Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Microbiol ; 22(1): 122, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513812

RESUMEN

BACKGROUND: Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS: A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS: All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.


Asunto(s)
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genisteína/metabolismo , Genisteína/farmacología , Islas Genómicas , Fijación del Nitrógeno/genética , Glycine max/genética , Simbiosis/genética
2.
Arch Microbiol ; 197(2): 223-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25323530

RESUMEN

TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.


Asunto(s)
Proteínas Bacterianas/genética , Gluconacetobacter/genética , Proteínas de la Membrana/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Sideróforos/genética , Transporte Biológico/genética , Medios de Cultivo/química , Prueba de Complementación Genética , Gluconacetobacter/enzimología , Gluconacetobacter/metabolismo , Hierro/metabolismo , Mutagénesis Insercional , Mutación , Nitrogenasa/genética , Fenotipo , Sideróforos/análisis , Sideróforos/metabolismo
3.
BMC Genomics ; 15: 420, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24888481

RESUMEN

BACKGROUND: The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS: Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS: Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Genoma Bacteriano , Glycine max/microbiología , Bradyrhizobium/fisiología , Tamaño del Genoma , Genómica , Secuencias Repetitivas Esparcidas , Datos de Secuencia Molecular , Filogenia , Recombinación Genética , Glycine max/fisiología , Simbiosis
4.
Braz J Microbiol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134912

RESUMEN

The phosphate (P)-solubilizing potential of rhizobia isolated from active root nodules of Brazilian native Mimosa and Desmodium was assessed. Out of the 15 strains selected, five Paraburkholderia isolated from Mimosa spp. grown in rocky outcrops stood out. The Ca3(PO4)2-solubilizing efficiency of these strains ranged from 110.67 to 356.3 mgL-1, with less expressive results for FePO4 and Al(H2PO4)3, that might be attributed to the low solubility of these two P compounds. Paraburkholderia strains CNPSo 3281 and CNPSo 3076 were the most efficient siderophore producers (44.17 and 41.87 µMol EDTA) and two of the top FePO4 solubilizers. Acidification of the culture media was observed for all the strains and P sources. Regarding Ca3(PO4)2 solubilization, the main organic acids detected were glucuronic (an important component of rhizobia exopolysaccharides) and gluconic acids. Genomic analysis of P. nodosa CNPSo 3281 and CNPSo 3076 along with other phosphate-solubilizing Paraburkholderia species of the genus pointed out a conserved gene organization of phoUBR, pstSCAB, ppk and ppx. Greenhouse experiment revealed that P. nodosa CNPSo 3281 and CNPSo 3076 promoted maize growth under low P. Our results indicate the relevance of native rhizobia as multifunctional plant-associated bacteria and the rocky outcrops ecosystems as hotspots for bioprospection.

5.
Funct Integr Genomics ; 13(2): 275-83, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23652766

RESUMEN

Rhizobial surface polysaccharides (SPS) are, together with nodulation (Nod) factors, recognized as key molecules for establishment of rhizobia-legume symbiosis. In Rhizobium tropici, an important nitrogen-fixing symbiont of common bean (Phaseolus vulgaris L.), molecular structures and symbiotic roles of the SPS are poorly understood. In this study, Rhizobium sp. strain PRF 81 genes, belonging to the R. tropici group, were investigated: lpxA and lpxE, involved in biosynthesis and modification of the lipid-A anchor of lipopolysaccharide (LPS), and rkpI, involved in synthesis of a lipid carrier required for production of capsular polysaccharides (KPS). Reverse transcription quantitative PCR (RT-qPCR) analysis revealed, for the first time, that inducers released from common bean seeds strongly stimulated expression of all three SPS genes. When PRF 81 cells were grown for 48 h in the presence of seed exudates, twofold increases (p < 0.05) in the transcription levels of lpxE, lpxA, and rkpI genes were observed. However, higher increases (p < 0.05) in transcription rates, about 50-fold for lpxE and about 30-fold for lpxA and rkpI, were observed after only 5 min of incubation with common bean seed exudates. Evolutionary analyses revealed that lpxA and lpxE of PRF81 and of the type strain of R. tropici CIAT899(T)clustered with orthologous Rhizobium radiobacter and were more related to R. etli and Rhizobium leguminosarum, while rkpI was closer to the Sinorhizobium sp. group. Upregulation of lpxE, lpxA, and rkpI genes suggests that seed exudates can modulate production of SPS of Rhizobium sp. PRF81, leading to cell wall changes necessary for symbiosis establishment.


Asunto(s)
Genes Bacterianos/genética , Phaseolus/química , Exudados de Plantas/farmacología , Polisacáridos Bacterianos/biosíntesis , Rhizobium/genética , Semillas/química , Simbiosis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Filogenia , Polisacáridos Bacterianos/genética , Rhizobium/efectos de los fármacos , Simbiosis/genética
6.
Braz J Microbiol ; 53(3): 1409-1424, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35499750

RESUMEN

Plant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B. trimera from Ponta Grossa and Ortigueira localities and identified by sequencing and restriction analysis of the 16S rDNA. The most promising isolates were screened for antifungal activities and the production of siderophores and biosurfactants. B. trimera presented a diverse community of rhizobacteria, constituted of 26 families and 41 genera, with a predominance of Streptomyces and Bacillus genera, followed by Paenibacillus, Staphylococcus, Methylobacterium, Rhizobium, Tardiphaga, Paraburkholderia, Burkholderia, and Pseudomonas. The more abundant genera were represented by different species, showing a high diversity of the microbiota associated to B. trimera. Some of these isolates potentially represent novel species and deserve further examination. The communities were influenced by both the edaphic properties of the sampling locations and the plant niches. Approximately one-third of the rhizobacteria exhibited antifungal activity against Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, and a high proportion of isolates produced siderophores (25%) and biosurfactants (42%). The most promising isolates were members of the Streptomyces genus. The survey of B. trimera returned a diverse community of culturable rhizobacteria and identified potential candidates for the development of plant growth-promoting and protection products, reinforcing the need for more comprehensive investigations of the microbiota of Brazilian native plants and habitats.


Asunto(s)
Baccharis , Plantas Medicinales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antifúngicos/metabolismo , Antifúngicos/farmacología , Baccharis/metabolismo , Bacterias , Humanos , Raíces de Plantas/microbiología , Rizosfera , Sideróforos/metabolismo
7.
Funct Integr Genomics ; 10(3): 425-31, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20013017

RESUMEN

Rhizobium tropici is a diazotrophic microsymbiont of common bean (Phaseolus vulgaris L.) that encompasses important but still poorly studied tropical strains, and a recent significant contribution to the knowledge of the species was the publication of a genomic draft of strain PRF 81, which revealed several novel genes [Pinto et al. Funct Int Gen 9:263-270, 2009]. In this study, we investigated the transcription of nodC, nodG, and glgX genes, located in the nod operon of PRF 81 strain, by reverse-transcription quantitative PCR. All three genes showed low levels of transcription when the cells were grown until exponential growth phase in the presence of common-bean-seed exudates or of the root nod-gene inducer naringenin. However, when cells at the exponential phase of growth were incubated with seed exudates, transcription occurred after only 5 min, and nodC, nodG, and glgX were transcribed 121.97-, 14.86-, and 50.29-fold more than the control, respectively, followed by a rapid decrease in gene transcription. Much lower levels of transcription were observed in the presence of naringenin; furthermore, maximum transcription required 8 h of incubation for all three genes. In light of these results, the mechanisms of induction of the nodulation genes by flavonoids are discussed.


Asunto(s)
Proteínas Bacterianas/genética , Genes Bacterianos/genética , Rhizobium tropici/genética , Proteínas Bacterianas/metabolismo , Flavanonas/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Exudados de Plantas/farmacología , Rhizobium tropici/efectos de los fármacos , Rhizobium tropici/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos
8.
Res Microbiol ; 168(3): 283-292, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27845247

RESUMEN

Like many rhizobia, Rhizobium tropici produces indole-3-acetic acid (IAA), an important signal molecule required for root hair infection in rhizobia-legume symbioses. However, the IAA biosynthesis pathway and its regulation by R. tropici are still poorly understood. In this study, IAA synthesis and the effects of mineral N in IAA production by R. tropici CIAT 899 were verified by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). Furthermore, expression of genes related to IAA biosynthesis and metabolism were evaluated by RT-qPCR. Results indicated that IAA production by CIAT 899 was 12 times lower in the presence of [Formula: see text] . Moreover, it was found that indole-3-pyruvate (IPyA) is the major IAA biosynthesis intermediate. Genes y4wE, lao and iorA were identified by analysis of R. tropici genome in silico and were upregulated by tryptophan, indicating a possible role of these genes in IAA biosynthesis by CIAT 899. In conclusion, we show that IPyA is the major pathway for IAA biosynthesis in CIAT 899 and that its production is strongly inhibited by [Formula: see text] . Although present results arose from in vitro experiments, they provide new insight into the role of nitrogen in early events related to legume nodulation.


Asunto(s)
Compuestos de Amonio/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rhizobium tropici/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Fabaceae/crecimiento & desarrollo , Fabaceae/fisiología , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Fijación del Nitrógeno/genética , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhizobium tropici/efectos de los fármacos , Simbiosis
9.
Genet Mol Biol ; 35(1 (suppl)): 348-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802720

RESUMEN

Sample preparation is a critical step in two-dimensional gel electrophoresis (2-DE) of plant tissues. Here we describe a phenol/SDS procedure that, although greatly simplified, produced well-resolved and reproducible 2-DE profiles of protein extracts from soybean [Glycine max (L.) Merril] roots. Extractions were made in three replicates using both the original and simplified procedure. To evaluate the quality of the extracted proteins, ten spots were randomly selected and identified by mass spectrometry (MS). The 2-DE gels were equally well resolved, with no streaks or smears, and no significant differences were observed in protein yield, reproducibility, resolution or number of spots. Mass spectra of the ten selected spots were compared with database entries and allowed high-quality identification of proteins. The simplified protocol described here presents considerable savings of time and reagents without compromising the quality of 2-DE protein profiles and compatibility with MS analysis, and may facilitate the progress of proteomics studies of legume-rhizobia interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA