Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Haematologica ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38031763

RESUMEN

Acute lymphoblastic leukemia (ALL) is an aggressive leukemia which can be derived from either T-cell or B-cell precursors. With current treatments, the survival rate is high, but the treatments are highly toxic with severe side effects. Individual mutations in IL7Rssand RAS pathways have been previously shown to be prevalent in ALL and especially in relapsed patients. The relationship of IL-7R77and RAS was investigated by transducing immature mouse thymocytes with the combination of these mutants. The resultant ALL cells were analyzed to identify the regulators and the oncoproteins that are upregulated or downregulated by the combination of IL7Rα with NRAS. Leukemia cells showed a significant increase in IL7Rw-mediated BCL2 expression, and an increase in MYC protein levels, was mainly induced by NRAS signaling. MYC was both necessary and sufficient to replace mutant NRAS and drugs targeting the MYC pathway showed a therapeutic benefit in IL-7R7/NRAS T-ALL. We suggest that MYC protein stability can be regulated by PLK-1 kinase, which was increased mainly by the NRAS signal. These studies identify novel pathways of oncogenesis and new targets for intervention that could lead to better therapeutic development.

2.
Crit Rev Biotechnol ; : 1-18, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731338

RESUMEN

Bacterial infections of the respiratory tract cause millions of deaths annually. Several diseases exist wherein (1) bacterial infection is the main cause of disease (e.g., tuberculosis and bacterial pneumonia), (2) bacterial infection is a consequence of disease and worsens the disease prognosis (e.g., cystic fibrosis), and (3) bacteria-triggered inflammation propagates the disease (e.g., chronic obstructive pulmonary disease). Current approaches to combat infections generally include long and aggressive antibiotic treatments, which challenge patient compliance, thereby making relapses common and contributing to the development of antibiotic resistance. Consequently, the proportion of infections that cannot be treated with conventional antibiotics is rapidly increasing, and novel therapies are urgently needed. In this context, antimicrobial peptides (AMPs) have received considerable attention as they may exhibit potent antimicrobial effects against antibiotic-resistant bacterial strains but with modest toxicity. In addition, some AMPs suppress inflammation and provide other host defense functions (motivating the alternative term host defense peptides (HDPs)). However, the delivery of AMPs is complicated because they are large, positively charged, and amphiphilic. As a result of this, AMP delivery systems have recently attracted attention. For airway infections, the currently investigated delivery approaches range from aerosols and dry powders to various self-assembly and nanoparticle carrier systems, as well as their combinations. In this paper, we discuss recent developments in the field, ranging from mechanistic mode-of-action studies to the application of these systems for combating bacterial infections in the airways.

3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675167

RESUMEN

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Sistema Inmunológico , Neoplasias , Humanos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/inmunología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Nucleótidos de Guanina , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T , Linfocitos T/inmunología , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología
4.
Cytokine ; 160: 156049, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36201890

RESUMEN

OVERVIEW: IL-7 is a member of the family of cytokines with four anti-parallel α helixes that bind Type I cytokine receptors. It is produced by stromal cells and is required for development and homeostatic survival of lymphoid cells. GENOMIC ARCHITECTURE: Interleukin 7 (IL7) human IL7: gene ID: 3574 on ch 8; murine Il7 gene ID: 16,196 on ch 3. PROTEIN: Precursor contains a signal sequence, mature human IL-7 peptide 152aa, predicted 17.4kd peptide, glycosylated resulting in 25kd. Crystal structure: http://www.rcsb.org/structure/3DI2. REGULATION OF IL-7 PRODUCTION: Major producers are stromal cells in thymus, bone marrow and lymphoid organs but also reported in other tissues. Production is primarily constitutive but reported to be affected by IFNγ and other factors. IL-7 RECEPTORS: Two chains IL-7Rα (IL-7R) and γc (IL-2RG). Human IL-7R: gene ID 3575 on ch 5; human IL2RG: gene ID 3561 on ch X; mouse IL-7R: gene ID 16,197 on ch 15; murine Il2rg gene ID 16,186 on ch X. Member of γc family of receptors for cytokines IL-2, -4, -9, -15, and -21. Primarily expressed on lymphocytes but reports of other cell types. Expression in T-cells downregulated by IL-7. Low expression on Tregs, no expression on mature B-cells. Crystal structure: http://www.rcsb.org/structure/3DI2. IL-7 RECEPTOR SIGNAL TRANSDUCTION PATHWAYS: Major signals through JAK1, JAK3 to STAT5 and through non-canonical STAT3, STAT1, PI3K/AKT and MEK/ERK pathways. BIOLOGICAL ACTIVITY OF IL-7: Required for survival of immature thymocytes, naïve T-cells, memory T-cells, pro-B-cells and innate lymphocytes. Pharmacological treatment with IL-7 induces expansion of naïve and memory T-cells and pro-B-cells. ABNORMALITIES OF THE IL-7 PATHWAY IN DISEASE: Deficiencies in the IL-7 pathway in humans and mice result in severe combined immunodeficiency due to lymphopenia. Excessive signaling of the pathway in mice drives autoimmune diseases and in humans is associated with autoimmune syndromes including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, atopic dermatitis and asthma. Mutations in the IL-7 receptor pathway drive acute lymphoblastic leukemia. CLINICAL APPLICATIONS: IL-7 has been evaluated in patients with cancer and shown to expand lymphocytes. It accelerated lymphocyte recovery after hematopoietic stem cell transfer, and increased lymphocyte counts in AIDS patients and sepsis patients. Monoclonal antibodies blocking the IL-7 receptor are being evaluated in autoimmune diseases. Cytotoxic monoclonals are being evaluated in acute lymphoblastic leukemia. Drugs blocking the signal transduction pathway are being tested in autoimmunity and acute lymphoblastic leukemia.


Asunto(s)
Enfermedades Autoinmunes , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Anticuerpos Monoclonales , Humanos , Interleucina-2/metabolismo , Interleucina-7/farmacología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Señales de Clasificación de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo
5.
Microb Ecol ; 81(1): 169-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32617619

RESUMEN

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes. Phylogenetic analysis revealed that strain AB23 belongs to the Occallatibacter genus from the class Acidobacteriia (subdivision 1). Strain AB23 produced carotenoids in the presence of light and vitamins; however, the growth rate and biomass decreased when cells were exposed to light. The presence of carotenoids resulted in tolerance to hydrogen peroxide. Comparative genomics revealed that all members of Acidobacteriia with available genomes possess the complete gene cluster for phytoene production. Some Acidobacteriia members have an additional gene cluster that may be involved in the production of colored carotenoids. Both colored and colorless carotenoids are involved in tolerance to oxidative stress. These results show that the presence of carotenoid genes is widespread among Acidobacteriia. Light and atmospheric oxygen stimulate carotenoid synthesis, but there are other natural sources of oxidative stress in soils. Tolerance to environmental oxidative stress provided by carotenoids may offer a competitive advantage for Acidobacteria in soils.


Asunto(s)
Acidobacteria/genética , Acidobacteria/metabolismo , Farmacorresistencia Bacteriana/genética , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/fisiología , Acidobacteria/efectos de los fármacos , Acidobacteria/aislamiento & purificación , Carotenoides/metabolismo , ADN Bacteriano/genética , Genoma Bacteriano/genética , Familia de Multigenes/genética , Suelo/química , Microbiología del Suelo
6.
Appl Microbiol Biotechnol ; 105(19): 7115-7121, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499200

RESUMEN

Antibiotic growth promoters (AGPs) have been administered in livestock for decades to improve food digestion in growing animals, while also contributing to the control of microbial pathogens. The long-term and indiscrimate use of AGPs has generated genetic modifications in bacteria, leading to antimicrobial resistance (AMR), which can be disseminated to commensal and pathogenic bacteria. Thus, antimicrobial peptides (AMPs) are used to replaced AGPs. AMPs are found in all domains of life, and their cationic characteristics can establish electrostatic interactions with the bacterial membrane. These molecules used as growth promoters can present benefits for nutrient digestibility, intestinal microbiota, intestinal morphology, and immune function activities. Therefore, this review focuses on the application of AMPs with growth promoting potential in livestock, as an alternative to conventional antibiotic growth promoters, in an attempt to control AMR. KEY POINTS: • The long-term and indiscriminate use of AGPs in animal food can cause AMR. • AMPs can be used as substitute of antibiotics in animal food suplementation. • Animal food suplementated with AMPs can provied economic efficiency and sustainable livestock production.


Asunto(s)
Ganado , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico , Animales , Ganado/crecimiento & desarrollo
7.
Artículo en Inglés | MEDLINE | ID: mdl-31061163

RESUMEN

Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Virus de la Encefalitis Japonesa (Subgrupo)/efectos de los fármacos , Nucleósidos/análogos & derivados , Animales , Antivirales/química , Chlorocebus aethiops , Dengue/sangre , Dengue/patología , Virus del Dengue/genética , Virus del Dengue/fisiología , Evaluación Preclínica de Medicamentos/métodos , Virus de la Encefalitis Japonesa (Subgrupo)/genética , Virus de la Encefalitis Japonesa (Subgrupo)/fisiología , Encefalitis por Arbovirus/tratamiento farmacológico , Ratones , Modelos Moleculares , Nucleósidos/química , Nucleósidos/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
8.
BMC Cancer ; 17(1): 756, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-29132324

RESUMEN

BACKGROUND: The spontaneous immortalization of primary malignant cells is frequently assigned to their genetic instability during in vitro culturing. In this study, the new epithelial ovarian cancer cell line CAISMOV24 was described and compared with its original low-grade serous ovarian carcinoma. METHODS: The in vitro culture was established with cells isolated from ascites of a 60-year-old female patient with recurrent ovarian cancer. The CAISMOV24 line was assessed for cell growth, production of soluble biomarkers, expression of surface molecules and screened for typical mutations found in serous ovarian carcinoma. Additionally, comparative genomic hybridization was employed to compare genomic alterations between the CAISMOV24 cell line and its primary malignant cells. RESULTS: CAISMOV24 has been in continuous culture for more than 30 months and more than 100 in vitro passages. The cell surface molecules EpCAM, PVR and CD73 are overexpressed on CAISMOV24 cells compared to the primary malignant cells. CAISMOV24 continues to produce CA125 and HE4 in vitro. Although the cell line had developed alongside the accumulation of genomic alterations (28 CNV in primary cells and 37 CNV in CAISMOV24), most of them were related to CNVs already present in primary malignant cells. CAISMOV24 cell line harbored KRAS mutation with wild type TP53, therefore it is characterized as low-grade serous carcinoma. CONCLUSION: Our results corroborate with the idea that genomic alterations, depicted by CNVs, can be used for subtyping epithelial ovarian carcinomas. Additionally, CAISMOV24 cell line was characterized as a low-grade serous ovarian carcinoma, which still resembles its primary malignant cells.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Hibridación Genómica Comparativa , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Análisis Citogenético , Femenino , Humanos , Inmunohistoquímica , Inmunofenotipificación , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas
10.
Nucleic Acids Res ; 40(Web Server issue): W491-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22675073

RESUMEN

The enrichment analysis is a standard procedure to interpret 'omics' experiments that generate large gene lists as outputs, such as transcriptomics and protemics. However, despite the huge success of enrichment analysis in these classes of experiments, there is a surprising lack of application of this methodology to survey other categories of large-scale biological data available. Here, we report Kegg Orthology enrichMent-Online DetectiOn (KOMODO), a web tool to systematically investigate groups of monophyletic genomes in order to detect significantly enriched groups of homologous genes in one taxon when compared with another. The results are displayed in their proper biochemical roles in a visual, explorative way, allowing users to easily formulate and investigate biological hypotheses regarding the taxonomical distribution of genomic elements. We validated KOMODO by analyzing portions of central carbon metabolism in two taxa extensively studied regarding their carbon metabolism profile (Enterobacteriaceae family and Lactobacillales order). Most enzymatic activities significantly biased were related to known key metabolic traits in these taxa, such as the distinct fates of pyruvate (the known tendency of lactate production in Lactobacillales and its complete oxidation in Enterobacteriaceae), demonstrating that KOMODO could detect biologically meaningful differences in the frequencies of shared genomic elements among taxa. KOMODO is freely available at http://komodotool.org.


Asunto(s)
Genes , Filogenia , Programas Informáticos , Ciclo del Ácido Cítrico/genética , Gráficos por Computador , Enterobacteriaceae/clasificación , Enterobacteriaceae/enzimología , Enterobacteriaceae/genética , Genes Bacterianos , Genómica/métodos , Glucólisis/genética , Internet , Lactobacillales/clasificación , Lactobacillales/enzimología , Lactobacillales/genética
11.
medRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38947091

RESUMEN

Acute SARS-CoV-2 infection triggers the generation of diverse and functional autoantibodies (AABs), even after mild cases. Persistently elevated autoantibodies have been found in some individuals with long COVID (LC). Using a >21,000 human protein array, we identified diverse AAB targets in LC patients that correlated with their symptoms. Elevated AABs to proteins in the nervous system were found in LC patients with neurocognitive and neurological symptoms. Purified Immunoglobulin G (IgG) samples from these individuals reacted with human pons tissue and were cross-reactive with mouse sciatic nerves, spinal cord, and meninges. Antibody reactivity to sciatic nerves and meninges correlated with patient-reported headache and disorientation. Passive transfer of IgG from patients to mice led to increased sensitivity and pain, mirroring patient-reported symptoms. Similarly, mice injected with IgG showed loss of balance and coordination, reflecting donor-reported dizziness. Our findings suggest that targeting AABs could benefit some LC patients.

12.
Expert Opin Drug Discov ; 18(3): 287-302, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720196

RESUMEN

INTRODUCTION: Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED: AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION: The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Aminoácidos , Bacterias , Antibacterianos/farmacología
13.
Peptides ; 165: 171011, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37068711

RESUMEN

Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response.


Asunto(s)
Antiinfecciosos , Catelicidinas , Dominios Proteicos , Animales , Humanos , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Catelicidinas/química , Catelicidinas/genética , Inmunidad Innata , Mamíferos , Dominios Proteicos/fisiología
14.
J Vis Exp ; (196)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358271

RESUMEN

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice. To achieve successful outcomes, a series of coordinated steps involving the simultaneous manipulation of different types of cells must be carefully performed. Although these are very well-established procedures, the lack of a common source in the literature often means a series of optimizations are required, which can be time-consuming. This protocol has been shown to be efficient in transducing primary thymocytes followed by differentiation on OP9-DL4 cells. Detailed here is a protocol that can serve as a quick and optimized guide for the co-culture of retrovirally transduced thymocytes on OP9-DL4 stromal cells.


Asunto(s)
Leucemia de Células T , Timocitos , Ratones , Animales , Timocitos/metabolismo , Técnicas de Cocultivo , Diferenciación Celular/fisiología , Células del Estroma , Ratones Transgénicos , Oncogenes , Leucemia de Células T/genética , Leucemia de Células T/metabolismo
15.
Gut Pathog ; 15(1): 28, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322488

RESUMEN

BACKGROUND: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS: The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION: Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.

16.
Front Microbiol ; 13: 874153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663853

RESUMEN

In the last few decades, antimicrobial resistance (AMR) has been a worldwide concern. The excessive use of antibiotics affects animal and human health. In the last few years, livestock production has used antibiotics as food supplementation. This massive use can be considered a principal factor in the accelerated development of genetic modifications in bacteria. These modifications are responsible for AMR and can be widespread to pathogenic and commensal bacteria. In addition, these antibiotic residues can be dispersed by water and sewer water systems, the contamination of soil and, water and plants, in addition, can be stocked in tissues such as muscle, milk, eggs, fat, and others. These residues can be spread to humans by the consumption of water or contaminated food. In addition, studies have demonstrated that antimicrobial resistance may be developed by vertical and horizontal gene transfer, producing a risk to public health. Hence, the World Health Organization in 2000 forbid the use of antibiotics for feed supplementation in livestock. In this context, to obtain safe food production, one of the potential substitutes for traditional antibiotics is the use of antimicrobial peptides (AMPs). In general, AMPs present anti-infective activity, and in some cases immune response. A limited number of AMP-based drugs are now available for use in animals and humans. This use is still not widespread due to a few problems like in-vivo effectiveness, stability, and high cost of production. This review will elucidate the different AMPs applications in animal diets, in an effort to generate safe food and control AMR.

17.
Intensive Care Med Exp ; 10(1): 53, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529842

RESUMEN

BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.

18.
J Appl Physiol (1985) ; 132(2): 375-387, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941443

RESUMEN

Increases in positive end-expiratory pressure (PEEP) or recruitment maneuvers may increase stress in lung parenchyma, extracellular matrix, and lung vessels; however, adaptative responses may occur. We evaluated the effects of PEEP on lung damage and cardiac function when increased abruptly, gradually, or more gradually in experimental mild/moderate acute respiratory distress syndrome (ARDS) induced by Escherichia coli lipopolysaccharide intratracheally. After 24 h, Wistar rats (n = 48) were randomly assigned to four mechanical ventilation strategies according to PEEP levels: 1) 3 cmH2O for 2 h (control); 2) 3 cmH2O for 1 h followed by an abrupt increase to 9 cmH2O for 1 h (no adaptation time); 3) 3 cmH2O for 30 min followed by a gradual increase to 9 cmH2O over 30 min then kept constant for 1 h (shorter adaptation time); and 4) more gradual increase in PEEP from 3 cmH2O to 9 cmH2O over 1 h and kept constant thereafter (longer adaptation time). At the end of the experiment, oxygenation improved in the shorter and longer adaptation time groups compared with the no-adaptation and control groups. Diffuse alveolar damage and expressions of interleukin-6, club cell protein-16, vascular cell adhesion molecule-1, amphiregulin, decorin, and syndecan were higher in no adaptation time compared with other groups. Pulmonary arterial pressure was lower in longer adaptation time than in no adaptation (P = 0.002) and shorter adaptation time (P = 0.025) groups. In this model, gradually increasing PEEP limited lung damage and release of biomarkers associated with lung epithelial/endothelial cell and extracellular matrix damage, as well as the PEEP-associated increase in pulmonary arterial pressure.NEW & NOTEWORTHY In a rat model of Escherichia coli lipopolysaccharide-induced mild/moderate acute respiratory distress syndrome, a gradual PEEP increase (shorter adaptation time) effectively mitigated histological lung injury and biomarker release associated with lung inflammation, damage to epithelial cells, endothelial cells, and the extracellular matrix compared with an abrupt increase in PEEP. A more gradual PEEP increase (longer adaptation time) decreased lung damage, pulmonary vessel compression, and pulmonary arterial pressure.


Asunto(s)
Células Endoteliales , Síndrome de Dificultad Respiratoria , Animales , Ratas , Pulmón , Respiración con Presión Positiva , Ratas Wistar , Síndrome de Dificultad Respiratoria/terapia
19.
Front Physiol ; 13: 992401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388107

RESUMEN

Background: Fluid regimens in acute respiratory distress syndrome (ARDS) are conflicting. The amount of fluid and positive end-expiratory pressure (PEEP) level may interact leading to ventilator-induced lung injury (VILI). We therefore evaluated restrictive and liberal fluid strategies associated with low and high PEEP levels with regard to lung and kidney damage, as well as cardiorespiratory function in endotoxin-induced ARDS. Methods: Thirty male Wistar rats received an intratracheal instillation of Escherichia coli lipopolysaccharide. After 24 h, the animals were anesthetized, protectively ventilated (VT = 6 ml/kg), and randomized to restrictive (5 ml/kg/h) or liberal (40 ml/kg/h) fluid strategies (Ringer lactate). Both groups were then ventilated with PEEP = 3 cmH2O (PEEP3) and PEEP = 9 cmH2O (PEEP9) for 1 h (n = 6/group). Echocardiography, arterial blood gases, and lung mechanics were evaluated throughout the experiments. Histologic analyses were done on the lungs, and molecular biology was assessed in lungs and kidneys using six non-ventilated animals with no fluid therapy. Results: In lungs, the liberal group showed increased transpulmonary plateau pressure compared with the restrictive group (liberal, 23.5 ± 2.9 cmH2O; restrictive, 18.8 ± 2.3 cmH2O, p = 0.046) under PEEP = 9 cmH2O. Gene expression associated with inflammation (interleukin [IL]-6) was higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.006) and restrictive-PEEP9 (p = 0.012), Regardless of the fluid strategy, lung mechanical power and the heterogeneity index were higher, whereas birefringence for claudin-4 and zonula-ocludens-1 gene expression were lower in the PEEP9 groups. Perivascular edema was higher in liberal groups, regardless of PEEP levels. Markers related to damage to epithelial cells [club cell secreted protein (CC16)] and the extracellular matrix (syndecan) were higher in the liberal-PEEP9 group than the liberal-PEEP3 group (p = 0.010 and p = 0.024, respectively). In kidneys, the expression of IL-6 and neutrophil gelatinase-associated lipocalin was higher in PEEP9 groups, regardless of the fluid strategy. For the liberal strategy, PEEP = 9 cmH2O compared with PEEP = 3 cmH2O reduced the right ventricle systolic volume (37%) and inferior vena cava collapsibility index (45%). Conclusion: The combination of a liberal fluid strategy and high PEEP led to more lung damage. The application of high PEEP, regardless of the fluid strategy, may also be deleterious to kidneys.

20.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813357

RESUMEN

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA