Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(21): E2785-94, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964336

RESUMEN

In metazoans, transition from fetal to adult heart is accompanied by a switch in energy metabolism-glycolysis to fatty acid oxidation. The molecular factors regulating this metabolic switch remain largely unexplored. We first demonstrate that the molecular signatures in 1-year (y) matured human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are similar to those seen in in vivo-derived mature cardiac tissues, thus making them an excellent model to study human cardiac maturation. We further show that let-7 is the most highly up-regulated microRNA (miRNA) family during in vitro human cardiac maturation. Gain- and loss-of-function analyses of let-7g in hESC-CMs demonstrate it is both required and sufficient for maturation, but not for early differentiation of CMs. Overexpression of let-7 family members in hESC-CMs enhances cell size, sarcomere length, force of contraction, and respiratory capacity. Interestingly, large-scale expression data, target analysis, and metabolic flux assays suggest this let-7-driven CM maturation could be a result of down-regulation of the phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty acid metabolism. These results indicate let-7 is an important mediator in augmenting metabolic energetics in maturing CMs. Promoting maturation of hESC-CMs with let-7 overexpression will be highly significant for basic and applied research.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Adulto , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Cardiovasculares , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Transducción de Señal , Ingeniería de Tejidos , Regulación hacia Arriba
2.
Methods ; 94: 43-50, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26344757

RESUMEN

Stem cell-derived cardiomyocytes have the potential to be used to study heart disease and maturation, screen drug treatments, and restore heart function. Here, we discuss the procedures involved in using micropost arrays to measure the contractile forces generated by stem cell-derived cardiomyocytes. Cardiomyocyte contractility is needed for the heart to pump blood, so measuring the contractile forces of cardiomyocytes is a straightforward way to assess their function. Microfabrication and soft lithography techniques are utilized to create identical arrays of flexible, silicone microposts from a common master. Micropost arrays are functionalized with extracellular matrix protein to allow cardiomyocytes to adhere to the tips of the microposts. Live imaging is used to capture videos of the deflection of microposts caused by the contraction of the cardiomyocytes. Image analysis code provides an accurate means to quantify these deflections. The contractile forces produced by a beating cardiomyocyte are calculated by modeling the microposts as cantilever beams. We have used this assay to assess techniques for improving the maturation and contractile function of stem cell-derived cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Análisis de la Célula Individual/instrumentación , Adhesión Celular , Células Cultivadas , Humanos , Contracción Miocárdica , Análisis de la Célula Individual/métodos
3.
J Biomech Eng ; 136(5): 051005, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24615475

RESUMEN

Human stem cell-derived cardiomyocytes hold promise for heart repair, disease modeling, drug screening, and for studies of developmental biology. All of these applications can be improved by assessing the contractility of cardiomyocytes at the single cell level. We have developed an in vitro platform for assessing the contractile performance of stem cell-derived cardiomyocytes that is compatible with other common endpoints such as microscopy and molecular biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were seeded onto elastomeric micropost arrays in order to characterize the contractile force, velocity, and power produced by these cells. We assessed contractile function by tracking the deflection of microposts beneath an individual hiPSC-CM with optical microscopy. Immunofluorescent staining of these cells was employed to assess their spread area, nucleation, and sarcomeric structure on the microposts. Following seeding of hiPSC-CMs onto microposts coated with fibronectin, laminin, and collagen IV, we found that hiPSC-CMs on laminin coatings demonstrated higher attachment, spread area, and contractile velocity than those seeded on fibronectin or collagen IV coatings. Under optimized conditions, hiPSC-CMs spread to an area of approximately 420 µm2, generated systolic forces of approximately 15 nN/cell, showed contraction and relaxation rates of 1.74 µm/s and 1.46 µm/s, respectively, and had a peak contraction power of 29 fW. Thus, elastomeric micropost arrays can be used to study the contractile strength and kinetics of hiPSC-CMs. This system should facilitate studies of hiPSC-CM maturation, disease modeling, and drug screens as well as fundamental studies of human cardiac contraction.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Fenómenos Mecánicos , Microtecnología/instrumentación , Contracción Miocárdica , Miocitos Cardíacos/citología , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Sarcómeros/metabolismo
4.
Biophys J ; 103(4): 640-8, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22947925

RESUMEN

Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues.


Asunto(s)
Adhesiones Focales/metabolismo , Fenómenos Mecánicos , Microtecnología/métodos , Fenómenos Biomecánicos , Células Endoteliales/citología , Humanos
5.
Am J Physiol Heart Circ Physiol ; 302(11): H2220-9, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22447948

RESUMEN

Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.


Asunto(s)
Uniones Adherentes/fisiología , Comunicación Celular/fisiología , Endotelio Vascular/citología , Mecanotransducción Celular/fisiología , Resistencia al Corte/fisiología , Uniones Adherentes/efectos de los fármacos , Amidas/farmacología , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/fisiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Humanos , Toxinas Marinas , Mecanotransducción Celular/efectos de los fármacos , Relajantes Musculares Centrales/farmacología , Oxazoles/farmacología , Arteria Pulmonar/citología , Piridinas/farmacología , Resistencia al Corte/efectos de los fármacos , Vasoconstrictores/farmacología
6.
J Vis Exp ; (159)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32449726

RESUMEN

Afterload is known to drive the development of both physiological and pathological cardiac states. As such, studying the outcomes of altered afterload states could yield important insights into the mechanisms controlling these critical processes. However, an experimental technique for precisely fine-tuning afterload in heart tissue over time is currently lacking. Here, a newly developed magnetics-based technique for achieving this control in engineered heart tissues (EHTs) is described. In order to produce magnetically responsive EHTs (MR-EHTs), the tissues are mounted on hollow silicone posts, some of which contain small permanent magnets. A second set of permanent magnets is press-fit into an acrylic plate such that they are oriented with the same polarity and are axially-aligned with the post magnets. To adjust afterload, this plate of magnets is translated toward (higher afterload) or away (lower afterload) from the post magnets using a piezoelectric stage fitted with an encoder. The motion control software used to adjust stage positioning allows for the development of user-defined afterload regimens while the encoder ensures that the stage corrects for any inconsistencies in its location. This work describes the fabrication, calibration, and implementation of this system to enable the development of similar platforms in other labs around the world. Representative results from two separate experiments are included to exemplify the range of different studies that can be performed using this system.


Asunto(s)
Corazón/fisiología , Fenómenos Magnéticos , Miocardio/citología , Presión , Ingeniería de Tejidos , Movimiento
7.
ACS Biomater Sci Eng ; 5(7): 3663-3675, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31637285

RESUMEN

Afterload plays important roles during heart development and disease progression, however, studying these effects in a laboratory setting is challenging. Current techniques lack the ability to precisely and reversibly alter afterload over time. Here, we describe a magnetics-based approach for achieving this control and present results from experiments in which this device was employed to sequentially increase afterload applied to rat engineered heart tissues (rEHTs) over a 7-day period. The contractile properties of rEHTs grown on control posts marginally increased over the observation period. The average post deflection, fractional shortening, and twitch velocities measured for afterload-affected tissues initially followed this same trend, but fell below control tissue values at high magnitudes of afterload. However, the average force, force production rate, and force relaxation rate for these rEHTs were consistently up to 3-fold higher than in control tissues. Transcript levels of hypertrophic or fibrotic markers and cell size remained unaffected by afterload, suggesting that the increased force output was not accompanied by pathological remodeling. Accordingly, the increased force output was fully reversed to control levels during a stepwise decrease in afterload over 4 hours. Afterload application did not affect systolic or diastolic tissue lengths, indicating that the afterload system was likely not a source of changes in preload strain. In summary, the afterload system developed herein is capable of fine-tuning EHT afterload while simultaneously allowing optical force measurements. Using this system, we found that small daily alterations in afterload can enhance the contractile properties of rEHTs, while larger increases can have temporary undesirable effects. Overall, these findings demonstrate the significant role that afterload plays in cardiac force regulation. Future studies with this system may allow for novel insights into the mechanisms that underlie afterload-induced adaptations in cardiac force development.

8.
ACS Biomater Sci Eng ; 5(8): 3876-3888, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-33438427

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be utilized to understand the mechanisms underlying the development and progression of heart disease, as well as to develop better interventions and treatments for this disease. However, these cells are structurally and functionally immature, which undermines some of their adequacy in modeling adult heart tissue. Previous studies with immature cardiomyocytes have shown that altering substrate stiffness, cell anisotropy, and/or cell-cell contact can enhance the contractile and structural maturation of hPSC-CMs. In this study, the structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were enhanced by exposure to a downselected combination of these three maturation stimuli. First, hESC-CMs were seeded onto substrates composed of two commercial formulations of polydimethylsiloxane (PDMS), Sylgard 184 and Sylgard 527, whose stiffness ranged from 5 kPa to 101 kPa. Upon analyzing the morphological and calcium transient properties of these cells, it was concluded that a 21 kPa substrate yielded cells with the highest degree of maturation. Next, these PDMS substrates were microcontact-printed with laminin to force the cultured cells into rod-shaped geometries using line patterns that were 12, 18, or 24 µm in width. We found that cells on the 18 and 24 µm pattern widths had structural and functional properties that were superior to those on the 12 µm pattern. The hESC-CMs were then seeded onto these line-stamped surfaces at a density of 500 000 cells per 25-mm-diameter substrate, to enable the formation of cell-cell contacts at their distal ends. We discovered that this combination of culture conditions resulted in cells that were more structurally and functionally mature than those that were only exposed to one or two stimuli. Our results suggest that downselecting a combination of mechanobiological stimuli could prove to be an effective means of maturing hPSC-CMs in vitro.

9.
Stem Cell Reports ; 13(4): 657-668, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31564645

RESUMEN

Although human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a novel platform for heart regeneration, disease modeling, and drug screening, their immaturity significantly hinders their application. A hallmark of postnatal cardiomyocyte maturation is the metabolic substrate switch from glucose to fatty acids. We hypothesized that fatty acid supplementation would enhance hPSC-CM maturation. Fatty acid treatment induces cardiomyocyte hypertrophy and significantly increases cardiomyocyte force production. The improvement in force generation is accompanied by enhanced calcium transient peak height and kinetics, and by increased action potential upstroke velocity and membrane capacitance. Fatty acids also enhance mitochondrial respiratory reserve capacity. RNA sequencing showed that fatty acid treatment upregulates genes involved in fatty acid ß-oxidation and downregulates genes in lipid synthesis. Signal pathway analyses reveal that fatty acid treatment results in phosphorylation and activation of multiple intracellular kinases. Thus, fatty acids increase human cardiomyocyte hypertrophy, force generation, calcium dynamics, action potential upstroke velocity, and oxidative capacity. This enhanced maturation should facilitate hPSC-CM usage for cell therapy, disease modeling, and drug/toxicity screens.


Asunto(s)
Diferenciación Celular , Ácidos Grasos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Carnitina/metabolismo , Línea Celular , Suplementos Dietéticos , Humanos , Cinética , Potenciales de la Membrana , Mitocondrias Cardíacas/metabolismo , Contracción Muscular , Oxidación-Reducción , Fosforilación Oxidativa , Transducción de Señal
11.
Nat Protoc ; 12(6): 1177-1197, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28492526

RESUMEN

Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos , Humanos
12.
Cell Adh Migr ; 10(5): 529-539, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27588610

RESUMEN

Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.


Asunto(s)
Movimiento Celular , Fibroblastos/citología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Elasticidad , Ratones , Células 3T3 NIH , Factores de Tiempo
13.
Integr Biol (Camb) ; 5(11): 1366-73, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056444

RESUMEN

As cardiomyocytes mature, their sarcomeres and Z-band widths increase in length in order for their myofibrils to produce stronger twitch forces during a contraction. In this study, we tested the hypothesis that tensional homeostasis is affected by altering myofibril forces. To assess this hypothesis, neonatal rat cardiomyocytes were cultured on arrays of microposts to measure cellular contractility. An optical line scanning technique was used to measure the deflections in the microposts with high temporal resolution, enabling the analysis of twitch force, twitch velocity, and twitch power. Myofibril force production was elevated by vector-mediated overexpression of ribonucleotide reductase (RR) to increase cellular dATP content or by adding the inotropic agent EMD 57033 (EMD). We found that RR and EMD treatment did not affect cardiomyocyte twitch force, but it did lead to reduced twitch velocity and twitch power. Immunofluorescent analysis of α-actinin revealed that RR-over-expressing cardiomyocytes and EMD-treated cardiomyocytes had lower spread area, sarcomere length, and Z-band width as compared to control cells. These results indicate a correlation between myofibril structure and cardiac power. This correlation was confirmed by exposing the cells to the myosin II inhibitor blebbistatin, and then subsequently washing it out. After wash-out, cardiomyocytes exhibited a reduction in twitch force, velocity, and power due to shorter sarcomere length and Z-band widths. Our results suggest that cardiac myofibril structure is regulated by tensional homeostasis. If myofibril-generated forces in cardiomyocytes are elevated, a state of tensional homeostasis is maintained by producing sufficient twitch forces with a lower degree myofibril structure.


Asunto(s)
Nucleótidos de Desoxiadenina/farmacología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Quinolinas/farmacología , Tiadiazinas/farmacología , Actinina/metabolismo , Animales , Animales Recién Nacidos , Cardiotónicos/farmacología , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Homeostasis , Microscopía Fluorescente , Contracción Muscular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Óptica y Fotónica , Ratas , Ratas Endogámicas F344 , Sarcómeros/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA