Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 327-345.e28, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603581

RESUMEN

Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , ARN Polimerasa II , Transcripción Genética , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Polimerasa II/metabolismo , Activación Transcripcional , Animales , Ratones
2.
Cell ; 183(3): 802-817.e24, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33053319

RESUMEN

Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.


Asunto(s)
Enfermedad , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ensamble y Desensamble de Cromatina , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enfermedad/genética , Humanos , Mutación Missense/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Immunol ; 22(10): 1327-1340, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556886

RESUMEN

During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCAB in GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions.


Asunto(s)
Cromatina/inmunología , Inmunidad Humoral/inmunología , Transportador 2 de Cátion Orgánico/inmunología , Dominios Proteicos/inmunología , Animales , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Epigenómica/métodos , Femenino , Genómica/métodos , Centro Germinal/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/inmunología
5.
Mol Cell ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955181

RESUMEN

The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.

6.
Mol Cell ; 83(13): 2206-2221.e11, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311463

RESUMEN

Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.


Asunto(s)
Cromatina , Histonas , Ratones , Animales , Cromatina/genética , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Acetilación
7.
Nat Rev Genet ; 24(11): 767-782, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37532915

RESUMEN

The RNA polymerase II (Pol II) pre-initiation complex (PIC) is a critical node in eukaryotic transcription regulation, and its formation is the major rate-limiting step in transcriptional activation. Diverse cellular signals borne by transcriptional activators converge on this large, multiprotein assembly and are transduced via intermediary factors termed coactivators. Cryogenic electron microscopy, multi-omics and single-molecule approaches have recently offered unprecedented insights into both the structure and cellular functions of the PIC and two key PIC-associated coactivators, Mediator and TFIID. Here, we review advances in our understanding of how Mediator and TFIID interact with activators and affect PIC formation and function. We also discuss how their functions are influenced by their chromatin environment and selected cofactors. We consider how, through its multifarious interactions and functionalities, a Mediator-containing and TFIID-containing PIC can yield an integrated signal processing system with the flexibility to determine the unique temporal and spatial expression pattern of a given gene.

8.
Genes Dev ; 35(9-10): 729-748, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888560

RESUMEN

The MED1 subunit has been shown to mediate ligand-dependent binding of the Mediator coactivator complex to multiple nuclear receptors, including the adipogenic PPARγ, and to play an essential role in ectopic PPARγ-induced adipogenesis of mouse embryonic fibroblasts. However, the precise roles of MED1, and its various domains, at various stages of adipogenesis and in adipose tissue have been unclear. Here, after establishing requirements for MED1, including specific domains, for differentiation of 3T3L1 cells and both primary white and brown preadipocytes, we used multiple genetic approaches to assess requirements for MED1 in adipocyte formation, maintenance, and function in mice. We show that MED1 is indeed essential for the differentiation and/or function of both brown and white adipocytes, as its absence in these cells leads to, respectively, defective brown fat function and lipodystrophy. This work establishes MED1 as an essential transcriptional coactivator that ensures homeostatic functions of adipocytes.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Complejo Mediador/genética , Ratones , Unión Proteica/genética , Dominios Proteicos
9.
Cell ; 152(5): 1021-36, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452851

RESUMEN

Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes.


Asunto(s)
Código de Histonas , Histonas/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Línea Celular Tumoral , Humanos , Lisina/metabolismo , Metilación , TATA Box , Factores Asociados con la Proteína de Unión a TATA , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/metabolismo
10.
Cell ; 154(2): 297-310, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870121

RESUMEN

The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Secuencia de Aminoácidos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Células HCT116 , Código de Histonas , Histonas/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Transcripción Genética
11.
Mol Cell ; 78(6): 993-995, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32559427

RESUMEN

In this issue of Molecular Cell, Wu et al. (2020) describe studies that establish oncogenic versus tumor-suppressive functions of two BRD4 isoforms in the regulation of gene expression and breast cancer development.


Asunto(s)
Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular , Oncogenes , Isoformas de Proteínas
12.
Mol Cell ; 78(4): 765-778.e7, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32298650

RESUMEN

Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , ARN de Transferencia/metabolismo , Proteínas Represoras/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Transcripción Genética , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Proteínas Represoras/genética , Proteínas Celulares de Unión al Retinol/genética
13.
Mol Cell ; 80(5): 845-861.e10, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33232656

RESUMEN

Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Región de Control de Posición/inmunología , Animales , Linfocitos B/citología , Línea Celular Tumoral , Centro Germinal/citología , Células HEK293 , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/inmunología , Ratones , Ratones Noqueados , Transportador 2 de Cátion Orgánico/genética , Transportador 2 de Cátion Orgánico/inmunología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Transactivadores/genética , Transactivadores/inmunología
14.
Genes Dev ; 34(11-12): 767-784, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381628

RESUMEN

Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1), and up-regulation of p21 through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation. Mechanistically, Gdown1 is associated with elongating Pol II on the highly expressed genes and its ablation leads to reduced Pol II recruitment to these genes, suggesting that Pol II redistribution may facilitate hepatocyte re-entry into the cell cycle. These results establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes.


Asunto(s)
Ciclo Celular/genética , Regulación hacia Abajo/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Animales , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Genes p53/genética , Hepatocitos , Hígado/citología , Hígado/metabolismo , Transducción de Señal/genética
15.
Mol Cell ; 74(2): 268-283.e5, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30902546

RESUMEN

Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteína p300 Asociada a E1A/genética , Proteínas/genética , Transcripción Genética , Acetilación , Linfocitos B/química , Sitios de Unión , Factor de Unión a CCCTC/química , Antígenos CD40/genética , Cromatina/química , Cromatina/genética , Proteína p300 Asociada a E1A/química , Código de Histonas , Histonas/química , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleosomas/química , Nucleosomas/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Proteínas/química , ARNt Metiltransferasas
16.
Mol Cell ; 75(4): 683-699.e7, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31399344

RESUMEN

Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Sirtuinas/metabolismo , Elongación de la Transcripción Genética , Acetilación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Eliminación de Gen , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/genética , Sirtuinas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
17.
Cell ; 144(4): 513-25, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21335234

RESUMEN

Histone H3K4 methylation is associated with active genes and, along with H3K27 methylation, is part of a bivalent chromatin mark that typifies poised developmental genes in embryonic stem cells (ESCs). However, its functional roles in ESC maintenance and differentiation are not established. Here we show that mammalian Dpy-30, a core subunit of the SET1/MLL histone methyltransferase complexes, modulates H3K4 methylation in vitro, and directly regulates chromosomal H3K4 trimethylation (H3K4me3) throughout the mammalian genome. Depletion of Dpy-30 does not affect ESC self-renewal, but significantly alters the differentiation potential of ESCs, particularly along the neural lineage. The differentiation defect is accompanied by defects in gene induction and in H3K4 methylation at key developmental loci. Our results strongly indicate an essential functional role for Dpy-30 and SET1/MLL complex-mediated H3K4 methylation, as a component of the bivalent mark, at developmental genes during the ESC fate transitions.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Proteínas de Unión al ADN , Células Madre Embrionarias/citología , Técnicas de Silenciamiento del Gen , Genoma , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Ratones , Neuronas/citología , Proteínas Nucleares/genética , Transcripción Genética , Tretinoina/metabolismo
18.
Nature ; 577(7788): 121-126, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853060

RESUMEN

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by 'reader' proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatin-reader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


Asunto(s)
Linaje de la Célula , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Mutación con Ganancia de Función , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Ratones , Nefronas/metabolismo , Nefronas/patología , Factores de Transcripción/química , Factores de Transcripción/genética
20.
Mol Cell ; 70(4): 663-678.e6, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775581

RESUMEN

Lysine 2-hydroxyisobutyrylation (Khib) is an evolutionarily conserved and widespread histone mark like lysine acetylation (Kac). Here we report that p300 functions as a lysine 2-hyroxyisobutyryltransferase to regulate glycolysis in response to nutritional cues. We discovered that p300 differentially regulates Khib and Kac on distinct lysine sites, with only 6 of the 149 p300-targeted Khib sites overlapping with the 693 p300-targeted Kac sites. We demonstrate that diverse cellular proteins, particularly glycolytic enzymes, are targeted by p300 for Khib, but not for Kac. Specifically, deletion of p300 significantly reduces Khib levels on several p300-dependent, Khib-specific sites on key glycolytic enzymes including ENO1, decreasing their catalytic activities. Consequently, p300-deficient cells have impaired glycolysis and are hypersensitive to glucose-depletion-induced cell death. Our study reveals an p300-catalyzed, Khib-specific molecular mechanism that regulates cellular glucose metabolism and further indicate that p300 has an intrinsic ability to select short-chain acyl-CoA-dependent protein substrates.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Glucosa/metabolismo , Glucólisis , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Acetilación , Proteína p300 Asociada a E1A/genética , Histonas/genética , Humanos , Lisina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA