Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35961774

RESUMEN

Teleost fishes are ancient tetraploids descended from an ancestral whole-genome duplication that may have contributed to the impressive diversification of this clade. Whole-genome duplications can occur via self-doubling (autopolyploidy) or via hybridization between different species (allopolyploidy). The mode of tetraploidization conditions evolutionary processes by which duplicated genomes return to diploid meiotic pairing, and subsequent genetic divergence of duplicated genes (cytological and genetic rediploidization). How teleosts became tetraploid remains unresolved, leaving a fundamental gap in the interpretation of their functional evolution. As a result of the whole-genome duplication, identifying orthologous and paralogous genomic regions across teleosts is challenging, hindering genome-wide investigations into their polyploid history. Here, we combine tailored gene phylogeny methodology together with a state-of-the-art ancestral karyotype reconstruction to establish the first high-resolution comparative atlas of paleopolyploid regions across 74 teleost genomes. We then leverage this atlas to investigate how rediploidization occurred in teleosts at the genome-wide level. We uncover that some duplicated regions maintained tetraploidy for more than 60 million years, with three chromosome pairs diverging genetically only after the separation of major teleost families. This evidence suggests that the teleost ancestor was an autopolyploid. Further, we find evidence for biased gene retention along several duplicated chromosomes, contradicting current paradigms that asymmetrical evolution is specific to allopolyploids. Altogether, our results offer novel insights into genome evolutionary dynamics following ancient polyploidizations in vertebrates.

2.
PLoS Genet ; 18(4): e1010191, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486646

RESUMEN

Whole genome sequencing is increasingly used to diagnose medical conditions of genetic origin. While both coding and non-coding DNA variants contribute to a wide range of diseases, most patients who receive a WGS-based diagnosis today harbour a protein-coding mutation. Functional interpretation and prioritization of non-coding variants represents a persistent challenge, and disease-causing non-coding variants remain largely unidentified. Depending on the disease, WGS fails to identify a candidate variant in 20-80% of patients, severely limiting the usefulness of sequencing for personalised medicine. Here we present FINSURF, a machine-learning approach to predict the functional impact of non-coding variants in regulatory regions. FINSURF outperforms state-of-the-art methods, owing in particular to optimized control variants selection during training. In addition to ranking candidate variants, FINSURF breaks down the score for each variant into contributions from individual annotations, facilitating the evaluation of their functional relevance. We applied FINSURF to a diverse set of 30 diseases with described causative non-coding mutations, and correctly identified the disease-causative non-coding variant within the ten top hits in 22 cases. FINSURF is implemented as an online server to as well as custom browser tracks, and provides a quick and efficient solution to prioritize candidate non-coding variants in realistic clinical settings.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Humanos , Mutación , Secuenciación Completa del Genoma
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36857092

RESUMEN

Amino acids evolve at different speeds within protein sequences, because their functional and structural roles are different. Notably, amino acids located at the surface of proteins are known to evolve more rapidly than those in the core. In particular, amino acids at the N- and C-termini of protein sequences are likely to be more exposed than those at the core of the folded protein due to their location in the peptidic chain, and they are known to be less structured. Because of these reasons, we would expect that amino acids located at protein termini would evolve faster than residues located inside the chain. Here we test this hypothesis and found that amino acids evolve almost twice as fast at protein termini compared with those in the center, hinting at a strong topological bias along the sequence length. We further show that the distribution of solvent-accessible residues and functional domains in proteins readily explain how structural and functional constraints are weaker at their termini, leading to the observed excess of amino acid substitutions. Finally, we show that the specific evolutionary rates at protein termini may have direct consequences, notably misleading in silico methods used to infer sites under positive selection within genes. These results suggest that accounting for positional information should improve evolutionary models.


Asunto(s)
Aminoácidos , Proteínas , Proteínas/genética , Proteínas/química , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/química , Exones , Sustitución de Aminoácidos , Evolución Molecular
4.
Nucleic Acids Res ; 50(D1): D1025-D1031, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34792170

RESUMEN

Genomicus is a database and web-server dedicated to comparative genomics in eukaryotes. Its main functionality is to graphically represent the conservation of genomic blocks between multiple genomes, locally around a specific gene of interest or genome-wide through karyotype comparisons. Since 2010 and its first release, Genomicus has synchronized with 60 Ensembl releases and seen the addition of functions that have expanded the type of analyses that users can perform. Today, five public instances of Genomicus are supporting a total number of 1029 extant genomes and 621 ancestral reconstructions from all eukaryotes kingdoms available in Ensembl and Ensembl Genomes databases complemented with four additional instances specific to taxonomic groups of interest. New visualization and query tools are described in this manuscript. Genomicus is freely available at http://www.genomicus.bio.ens.psl.eu/genomicus.


Asunto(s)
Bases de Datos Genéticas , Eucariontes/genética , Evolución Molecular , Genoma/genética , Eucariontes/clasificación , Genómica , Humanos , Internet , Filogenia , Programas Informáticos , Sintenía/genética
5.
Nucleic Acids Res ; 48(5): 2357-2371, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31943068

RESUMEN

The spatiotemporal expression of genes is controlled by enhancer sequences that bind transcription factors. Identifying the target genes of enhancers remains difficult because enhancers regulate gene expression over long genomic distances. To address this, we used an evolutionary approach to build two genome-wide maps of predicted enhancer-gene associations in the human and zebrafish genomes. Evolutionary conserved sequences were linked to their predicted target genes using PEGASUS, a bioinformatics method that relies on evolutionary conservation of synteny. The analysis of these maps revealed that the number of predicted enhancers linked to a gene correlate with its expression breadth. Comparison of both maps identified hundreds of putative vertebrate ancestral regulatory relationships from which we could determine that predicted enhancer-gene distances scale with genome size despite strong positional conservation. The two maps represent a resource for further studies, including the prioritization of sequence variants in whole genome sequence of patients affected by genetic diseases.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Factores de Transcripción/genética , Animales , Secuencia de Bases , Evolución Biológica , Mapeo Cromosómico , Biología Computacional/métodos , Secuencia Conservada , Embrión no Mamífero , Tamaño del Genoma , Humanos , Sintenía , Factores de Transcripción/metabolismo , Pez Cebra
6.
Nucleic Acids Res ; 48(D1): D668-D675, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31680137

RESUMEN

ANISEED (https://www.aniseed.cnrs.fr) is the main model organism database for the worldwide community of scientists working on tunicates, the vertebrate sister-group. Information provided for each species includes functionally-annotated gene and transcript models with orthology relationships within tunicates, and with echinoderms, cephalochordates and vertebrates. Beyond genes the system describes other genetic elements, including repeated elements and cis-regulatory modules. Gene expression profiles for several thousand genes are formalized in both wild-type and experimentally-manipulated conditions, using formal anatomical ontologies. These data can be explored through three complementary types of browsers, each offering a different view-point. A developmental browser summarizes the information in a gene- or territory-centric manner. Advanced genomic browsers integrate the genetic features surrounding genes or gene sets within a species. A Genomicus synteny browser explores the conservation of local gene order across deuterostome. This new release covers an extended taxonomic range of 14 species, including for the first time a non-ascidian species, the appendicularian Oikopleura dioica. Functional annotations, provided for each species, were enhanced through a combination of manual curation of gene models and the development of an improved orthology detection pipeline. Finally, gene expression profiles and anatomical territories can be explored in 4D online through the newly developed Morphonet morphogenetic browser.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genoma , Programas Informáticos , Urocordados/genética , Animales , Sitios de Unión , Cefalocordados/genética , Gráficos por Computador , Simulación por Computador , Equinodermos/genética , Evolución Molecular , Orden Génico , Genómica , Hibridación in Situ , Internet , Anotación de Secuencia Molecular , Filogenia , Lenguajes de Programación , RNA-Seq , Sintenía , Interfaz Usuario-Computador , Vertebrados/genética
7.
Mol Biol Evol ; 37(11): 3324-3337, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556216

RESUMEN

Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


Asunto(s)
Técnicas Genéticas , Filogenia , Poliploidía , Algoritmos , Animales , Evolución Biológica , Duplicación Cromosómica , Peces/genética , Familia de Multigenes
8.
Nucleic Acids Res ; 46(D1): D816-D822, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29087490

RESUMEN

Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView).


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Cariotipo , Filogenia , Sintenía , Algoritmos , Animales , Presentación de Datos , Hongos/genética , Genoma , Plantas/genética , Programas Informáticos , Vertebrados/genética
9.
Hum Mol Genet ; 26(1): 90-108, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007902

RESUMEN

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/ultraestructura , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Neuronas/ultraestructura
10.
Nucleic Acids Res ; 43(Database issue): D682-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378326

RESUMEN

The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Secuencia de Bases , Gráficos por Computador , Secuencia Conservada , ADN Intergénico/química , Evolución Molecular , Orden Génico , Genoma , Humanos , Internet , Filogenia , Análisis de Secuencia de Proteína , Vertebrados/genética
11.
Wound Repair Regen ; 24(2): 247-62, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26663515

RESUMEN

Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-ß, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies.


Asunto(s)
Reprogramación Celular/fisiología , Miofibroblastos/citología , Úlcera Varicosa/patología , Cicatrización de Heridas/fisiología , Anciano , Anciano de 80 o más Años , Diferenciación Celular , Células Cultivadas , Técnicas de Reprogramación Celular , Regulación hacia Abajo , Exudados y Transudados/citología , Humanos , Persona de Mediana Edad , ARN Interferente Pequeño/farmacología , Factor de Crecimiento Transformador beta/metabolismo
12.
Mol Biol Evol ; 31(10): 2637-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015647

RESUMEN

Gene loss is one of the main drivers in the evolution of genomes and species. The demonstration that a gene has been lost by pseudogenization is truly complete when one finds the pseudogene in the orthologous genomic region with respect to active genes in other species. In some cases, the identification of such orthologous loci is not possible because of chromosomal rearrangements or if the gene of interest has not yet been sequenced. This question is particularly important in the case of birds because the genomes of avian species possess only about 15,000 predicted genes, in comparison with 20,000 in mammals. Yet, gene loss raises the question of which functions are affected by the changes in gene counts. We describe a systematic approach that makes it possible to demonstrate gene loss in the chicken genome even if a pseudogene has not been found. By using phylogenetic and synteny analysis in vertebrates, genome-wide comparisons between the chicken genome and expressed sequence tags, RNAseq data analysis, statistical analysis of the chicken genome, and radiation hybrid mapping, we show that resistin, TNFα, and PAI-1 (SERPINE1), three genes encoding adipokines inhibiting insulin sensitivity, have been lost in chicken and zebra finch genomes. Moreover, omentin, a gene encoding an adipokine that enhances insulin sensitivity, has also been lost in the chicken genome. Overall, only one adipokine inhibiting insulin sensitivity and five adipokines enhancing insulin sensitivity are still present in the chicken genome. These genetic differences between mammals and chicken, given the functions of the genes in mammals, would have dramatic consequences on chicken endocrinology, leading to novel equilibriums especially in the regulation of energy metabolism, insulin sensitivity, as well as appetite and reproduction.


Asunto(s)
Adipoquinas/genética , Proteínas Aviares/genética , Pollos/genética , Eliminación de Gen , Insulina/metabolismo , Animales , Evolución Molecular , Femenino , Masculino , Filogenia , Reproducción/genética , Análisis de Secuencia de ARN , Sintenía , Vertebrados/genética
13.
Nucleic Acids Res ; 41(Database issue): D700-5, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193262

RESUMEN

Genomicus (http://www.dyogen.ens.fr/genomicus/) is a database and an online tool that allows easy comparative genomic visualization in >150 eukaryote genomes. It provides a way to explore spatial information related to gene organization within and between genomes and temporal relationships related to gene and genome evolution. For the specific vertebrate phylum, it also provides access to ancestral gene order reconstructions and conserved non-coding elements information. We extended the Genomicus database originally dedicated to vertebrate to four new clades, including plants, non-vertebrate metazoa, protists and fungi. This visualization tool allows evolutionary phylogenomics analysis and exploration. Here, we describe the graphical modules of Genomicus and show how it is capable of revealing differential gene loss and gain, segmental or genome duplications and study the evolution of a locus through homology relationships.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Eucariontes/genética , Genómica , Animales , Evolución Molecular , Orden Génico , Genoma Fúngico , Genoma de Planta , Humanos , Internet , Alineación de Secuencia , Programas Informáticos , Sintenía , Vertebrados/genética
14.
BMC Bioinformatics ; 15: 268, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25103980

RESUMEN

BACKGROUND: Extant genomes share regions where genes have the same order and orientation, which are thought to arise from the conservation of an ancestral order of genes during evolution. Such regions of so-called conserved synteny, or synteny blocks, must be precisely identified and quantified, as a prerequisite to better understand the evolutionary history of genomes. RESULTS: Here we describe PhylDiag, a software that identifies statistically significant synteny blocks in pairwise comparisons of eukaryote genomes. Compared to previous methods, PhylDiag uses gene trees to define gene homologies, thus allowing gene deletions to be considered as events that may break the synteny. PhylDiag also accounts for gene orientations, blocks of tandem duplicates and lineage specific de novo gene births. Starting from two genomes and the corresponding gene trees, PhylDiag returns synteny blocks with gaps less than or equal to the maximum gap parameter gap(max). This parameter is theoretically estimated, and together with a utility to graphically display results, contributes to making PhylDiag a user friendly method. In addition, putative synteny blocks are subject to a statistical validation to verify that they are unlikely to be due to a random combination of genes. CONCLUSIONS: We benchmark several known metrics to measure 2D-distances in a matrix of homologies and we compare PhylDiag to i-ADHoRe 3.0 on real and simulated data. We show that PhylDiag correctly identifies small synteny blocks even with insertions, deletions, incorrect annotations or micro-inversions. Finally, PhylDiag allowed us to identify the most relevant distance metric for 2D-distance calculation between homologies.


Asunto(s)
Duplicación de Gen , Genómica/métodos , Filogenia , Programas Informáticos , Sintenía , Animales , Humanos , Ratones , Modelos Genéticos
15.
Methods ; 63(1): 32-40, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23545196

RESUMEN

An emergent strategy for the transcriptome-wide study of protein-RNA interactions is CLIP-seq (crosslinking and immunoprecipitation followed by high-throughput sequencing). We combined CLIP-seq and mRNA-seq to identify direct RNA binding sites of eIF4AIII in human cells. This RNA helicase is a core constituant of the Exon Junction Complex (EJC), a multifunctional protein complex associated with spliced mRNAs in metazoans. Here, we describe the successive steps of the CLIP protocol and the computational tools and strategies we employed to map the physiological targets of eIF4AIII on human RNAs.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Sitios de Unión , Humanos , Transcriptoma/genética
16.
PLoS Genet ; 7(10): e1002276, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022272

RESUMEN

Nonsense Mediated Decay (NMD) degrades transcripts that contain a premature STOP codon resulting from mistranscription or missplicing. However NMD's surveillance of gene expression varies in efficiency both among and within human genes. Previous work has shown that the intron content of human genes is influenced by missplicing events invisible to NMD. Given the high rate of transcriptional errors in eukaryotes, we hypothesized that natural selection has promoted a dual strategy of "prevention and cure" to alleviate the problem of nonsense transcriptional errors. A prediction of this hypothesis is that NMD's inefficiency should leave a signature of "transcriptional robustness" in human gene sequences that reduces the frequency of nonsense transcriptional errors. For human genes we determined the usage of "fragile" codons, prone to mistranscription into STOP codons, relative to the usage of "robust" codons that do not generate nonsense errors. We observe that single-exon genes have evolved to become robust to mistranscription, because they show a significant tendency to avoid fragile codons relative to robust codons when compared to multi-exon genes. A similar depletion is evident in last exons of multi-exon genes. Histone genes are particularly depleted of fragile codons and thus highly robust to transcriptional errors. Finally, the protein products of single-exon genes show a strong tendency to avoid those amino acids that can only be encoded using fragile codons. Each of these observations can be attributed to NMD deficiency. Thus, in the human genome, wherever the "cure" for nonsense (i.e. NMD) is inefficient, there is increased reliance on the strategy of nonsense "prevention" (i.e. transcriptional robustness). This study shows that human genes are exposed to the deleterious influence of transcriptional errors. Moreover, it suggests that gene expression errors are an underestimated phenomenon, in molecular evolution in general and in selection for genomic robustness in particular.


Asunto(s)
Codón sin Sentido/genética , Codón sin Sentido/metabolismo , Histonas/genética , Intrones/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Codón/genética , Drosophila/genética , Evolución Molecular , Exones/genética , Expresión Génica , Genes , Genoma , Genoma Humano , Histonas/metabolismo , Humanos , Ratones , Estabilidad del ARN/genética , Transcripción Genética
17.
C R Biol ; 347: 1-8, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441104

RESUMEN

Tracing the phylogenetic relationships between species is one of the fundamental objectives of evolutionary biology. Since Charles Darwin's seminal work in the 19th century, considerable progress has been made towards establishing a tree of life that summarises the evolutionary history of species. Nevertheless, substantial uncertainties still remain. Specifically, the relationships at the origins of teleost fishes have been the subject of extensive debate over the last 50 years. This question has major implications for various research fields: there are almost 30,000 species in the teleost group, which includes invaluable model organisms for biomedical, evolutionary and ecological studies. Here, we present the work in which we solved this enigma. We demonstrated that eels are more closely related to bony-tongued fishes than to the rest of teleost fishes. We achieved this by taking advantage of new genomic data and leveraging innovative phylogenetic markers. Notably, in addition to traditional molecular phylogeny methods based on the evolution of gene sequences, we also considered the evolution of gene order along the DNA molecule. We discuss the challenges and opportunities that these new markers represent for the field of molecular phylogeny, and in particular the possibilities they offer for re-examining other controversial branches in the tree of life.


Retracer les relations de parenté entre espèces est un des objectifs fondamentaux de la biologie évolutive. Depuis les travaux fondateurs de Charles Darwin au 19 e siècle, des progrès considérables ont été effectués afin d'établir un arbre du vivant récapitulant l'histoire évolutive de l'ensemble des espèces. Néanmoins, d'importantes zones d'ombre subsistent. En particulier, les relations de parenté à l'origine de la classe des poissons téléostéens ont fait l'objet de nombreux débats, et ce depuis plus de 50 ans. La résolution de cette branche représente un enjeu majeur pour divers domaines de recherche  : on recense près de 30 000 espèces dans ce groupe, qui comprend des organismes modèles précieux à la recherche biomédicale, sur l'évolution, ou en écologie. Nous présentons ici les travaux qui nous ont permis d'élucider cette énigme. Nous avons pu démontrer que le groupe des « anguilliformes ¼ est plus proche de celui des poissons à langue osseuse qu'il ne l'est du reste des poissons téléostéens. Pour ce faire, nous avons tiré avantage de nouvelles données génomiques et de l'utilisation de marqueurs phylogénétiques innovants. En effet, en complément des méthodes de phylogénie moléculaire classiques qui se basent sur l'évolution des séquences des gènes, nous considérons également l'évolution de l'ordre des gènes le long de la molécule d'ADN. Nous discutons des défis et opportunités que ces nouveaux marqueurs représentent pour le domaine de la phylogénie moléculaire, et en particulier des possibilités qu'ils offrent pour réexaminer d'autres positions controversées de l'arbre du vivant.


Asunto(s)
Anguilas , Peces , Animales , Filogenia , Peces/genética
18.
PLoS Genet ; 6(2): e1000840, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20140238

RESUMEN

Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution.


Asunto(s)
Genoma/genética , Primates/genética , Selección Genética , Animales , Factores de Transcripción Forkhead/genética , Sitios Genéticos/genética , Genética de Población , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Receptores Toll-Like/genética
19.
Methods Mol Biol ; 2545: 155-173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720812

RESUMEN

Phylogenetic gene trees recapitulate the evolutionary history of genes across species, forming an essential framework for comparative genomic studies. In particular, within the context of whole-genome duplications (WGDs), they serve as a basis to investigate patterns of duplicate gene retention and loss, timing of genome rediploidization, and, more generally, to explore the functional consequences of the duplication in descending species. Yet, despite ever more sophisticated models to describe the evolution of gene sequences, building accurate gene trees remains a challenge in ancient polyploid taxons. WGDs generate complex gene families with many duplicated copies and recurrent gene losses, which complicate this task even more. Here, we describe how to use SCORPiOs, a novel method that leverages synteny conservation to provide more accurate phylogenies in the presence of a known WGD event.


Asunto(s)
Medicamentos Herbarios Chinos , Filogenia , Genes Duplicados , Genómica
20.
Nat Ecol Evol ; 7(3): 355-366, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646945

RESUMEN

Ancestral sequence reconstruction is a fundamental aspect of molecular evolution studies and can trace small-scale sequence modifications through the evolution of genomes and species. In contrast, fine-grained reconstructions of ancestral genome organizations are still in their infancy, limiting our ability to draw comprehensive views of genome and karyotype evolution. Here we reconstruct the detailed gene contents and organizations of 624 ancestral vertebrate, plant, fungi, metazoan and protist genomes, 183 of which are near-complete chromosomal gene order reconstructions. Reconstructed ancestral genomes are similar to their descendants in terms of gene content as expected and agree precisely with reference cytogenetic and in silico reconstructions when available. By comparing successive ancestral genomes along the phylogenetic tree, we estimate the intra- and interchromosomal rearrangement history of all major vertebrate clades at high resolution. This freely available resource introduces the possibility to follow evolutionary processes at genomic scales in chronological order, across multiple clades and without relying on a single extant species as reference.


Asunto(s)
Eucariontes , Genoma , Animales , Eucariontes/genética , Filogenia , Cromosomas , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA