Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Immunity ; 55(1): 31-55, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021057

RESUMEN

Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), ß-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.


Asunto(s)
Complicaciones de la Diabetes/inmunología , Diabetes Mellitus Tipo 2/inmunología , Inflamación/inmunología , Obesidad/inmunología , Animales , Humanos , Inmunomodulación , Resistencia a la Insulina
2.
Diabetologia ; 66(12): 2292-2306, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792013

RESUMEN

AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).


Asunto(s)
Inmunidad Innata , Linfocitos , Ratones , Animales , Macrófagos/metabolismo , Glucosa/metabolismo
3.
Part Fibre Toxicol ; 20(1): 25, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400850

RESUMEN

BACKGROUND: We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. METHODS: To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. RESULTS: Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1ß protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. CONCLUSION: In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.


Asunto(s)
Intolerancia a la Glucosa , Emisiones de Vehículos , Ratones , Animales , Emisiones de Vehículos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Intolerancia a la Glucosa/inducido químicamente , Inflamación , Inmunidad Innata
4.
Part Fibre Toxicol ; 20(1): 7, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895000

RESUMEN

BACKGROUND: Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS: To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS: Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS: We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Ratones , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Pulmón , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Lípidos
5.
Nat Metab ; 6(5): 880-898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605183

RESUMEN

The obesity epidemic continues to worsen worldwide, driving metabolic and chronic inflammatory diseases. Thiazolidinediones, such as rosiglitazone (Rosi), are PPARγ agonists that promote 'M2-like' adipose tissue macrophage (ATM) polarization and cause insulin sensitization. As ATM-derived small extracellular vesicles (ATM-sEVs) from lean mice are known to increase insulin sensitivity, we assessed the metabolic effects of ATM-sEVs from Rosi-treated obese male mice (Rosi-ATM-sEVs). Here we show that Rosi leads to improved glucose and insulin tolerance, transcriptional repolarization of ATMs and increased sEV secretion. Administration of Rosi-ATM-sEVs rescues obesity-induced glucose intolerance and insulin sensitivity in vivo without the known thiazolidinedione-induced adverse effects of weight gain or haemodilution. Rosi-ATM-sEVs directly increase insulin sensitivity in adipocytes, myotubes and primary mouse and human hepatocytes. Additionally, we demonstrate that the miRNAs within Rosi-ATM-sEVs, primarily miR-690, are responsible for these beneficial metabolic effects. Thus, using ATM-sEVs with specific miRNAs may provide a therapeutic path to induce insulin sensitization.


Asunto(s)
Tejido Adiposo , Vesículas Extracelulares , Resistencia a la Insulina , Macrófagos , Rosiglitazona , Animales , Rosiglitazona/farmacología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Ratones Endogámicos C57BL
6.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370804

RESUMEN

Fluorescent biosensors revolutionized biomedical science by enabling the direct measurement of signaling activities in living cells, yet the current technology is limited in resolution and dimensionality. Here, we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling protein tag HaloTag7 with bright far-red-emitting synthetic fluorophores. This technology enables five-color biosensor multiplexing, 4D activity imaging, and functional super-resolution imaging via stimulated emission depletion (STED) microscopy.

7.
Cell Metab ; 36(5): 1030-1043.e7, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38670107

RESUMEN

The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.


Asunto(s)
Proteínas de Unión al ADN , Cirrosis Hepática , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Factores de Transcripción de Dominio TEA/metabolismo , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Empalme Alternativo , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Estrelladas Hepáticas/metabolismo , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Ratones Noqueados
8.
Front Pediatr ; 11: 1249558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094191

RESUMEN

Introduction: Increasing survival rates after hematopoietic stem cell transplantation (HSCT) in childhood should put focus on improving the quality of life as adults. An essential aspect is fertility and its preservation. In order to take advantage of the possibility of fertility preservation, fertility counseling should be provided to patients and their parents prior to gonadotoxic therapies. Methods: The aim of this survey was to analyze the impact of fertility counseling in pediatric stem cell transplantation in patients and their parents using questionnaires designed for the study questions. Fifty-one parents and 7 adolescent patients were interviewed between February 2019 and October 2021 about the counseling, their perceptions of fertility issues, and the nature of decision- making concerning fertility preservation. The study included patients with malignant (e.g., leukemia, lymphoma, neuroblastoma) and nonmalignant diseases (e.g., thalassemia, sickle cell disease, immunodeficiency) who received counseling on fertility preservation before HSCT based on an in-house standard and analysed the impact for both groups. Results: Two-thirds of the study participants were concerned about having children and grandchildren respectively; for half of all respondents, the topic of fertility and fertility preservation proved to be hopeful. Forty percent of the study participants were burdened by the risk of possible fertility limitations after HSCT. Concerns about fertility was particularly significant for parents whose children were advised to undergo fertility preservation. Parents of children <12 years found deciding on appropriate measures more difficult. Parents with children >7 years involved their children in the decision. All study participants agreed that fertility counseling had not negatively affected the parent-child relationship. More than 90% of all study participants were in favor of addressing fertility, its potential limitations and fertility preservation measures before HSCT. There was no significant difference between the malignant and the non-malignant cohort in all study questions. Discussion: Overall, the standardized fertility counseling provided in our center of pediatric stem cell transplantation resulted in high satisfaction among patients and their parents. Multiple counseling on infertility risk, including the younger patients in the decision-making and further options after gonadotoxic therapy may increase the satisfaction of the counseled patients and their parents.

9.
Surg Obes Relat Dis ; 18(11): 1286-1297, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995662

RESUMEN

BACKGROUND: Roux-en-Y gastric bypass (RYGB) results in long-term weight loss and reduced obesity related co-morbidities. However, little is known about how the lengths of the biliopancreatic limb (BPL), the alimentary limb (AL), and the common limb (CL) affect weight loss and glucose metabolism. OBJECTIVES: Our aim was to establish a RYGB obese mouse model with defined proportions of the AL and BPL and a constant CL to assess the effects on weight loss,glucose metabolism, and obesity-related co-morbidities. SETTING: In vivo mouse study. METHODS: Six-week-old male C57BL/6J mice fed with a high-fat diet (HFD) underwent bariatric surgery with defined BPL lengths: a very long, long, and short BPL (35%, 25%, and 15% of total bowel length), or sham surgery. The length of the AL was adjusted to achieve the same CL length. Mice were analyzed for weight loss, glycemic control, and obesity-related co-morbidities. RESULTS: Mice undergoing RYGB surgery with a very long BPL had excessive weight loss and mortality and were therefore not further analyzed. Mice with a long BPL showed a significantly increased total weight loss when compared with mice with a short BPL. In addition, a long BPL improved glucose tolerance, particularly early after surgery. A long BPL was also associated with lower triglyceride levels. Resolution of hepatic steatosis and adipose tissue inflammation was, however, not statistically significant. Of note, bariatric surgery dramatically changed gut microbiota, regardless of limb length. CONCLUSION: In obese mice, a long BPL results in enhanced weight loss and improved glucose tolerance. These findings could potentially be translated to humans by tailoring the BPL length according to body weight, obesity-related co-morbidities, and total bowel length of an individual patient.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Masculino , Humanos , Ratones , Animales , Derivación Gástrica/métodos , Ratones Obesos , Obesidad Mórbida/cirugía , Control Glucémico , Ratones Endogámicos C57BL , Pérdida de Peso , Obesidad/cirugía , Glucosa
10.
Commun Biol ; 5(1): 370, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440795

RESUMEN

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Animales , Glucemia/metabolismo , Colon/metabolismo , Dieta Alta en Grasa/efectos adversos , Control Glucémico , Macrófagos/metabolismo , Ratones , Obesidad/etiología , Obesidad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Front Psychol ; 12: 633896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295279

RESUMEN

In the context of item response theory (IRT), linking the scales of two measurement points is a prerequisite to examine a change in competence over time. In educational large-scale assessments, non-identical test forms sharing a number of anchor-items are frequently scaled and linked using two- or three-parametric item response models. However, if item pools are limited and/or sample sizes are small to medium, the sparser Rasch model is a suitable alternative regarding the precision of parameter estimation. As the Rasch model implies stricter assumptions about the response process, a violation of these assumptions may manifest as model misfit in form of item discrimination parameters empirically deviating from their fixed value of one. The present simulation study investigated the performance of four IRT linking methods-fixed parameter calibration, mean/mean linking, weighted mean/mean linking, and concurrent calibration-applied to Rasch-scaled data with a small item pool. Moreover, the number of anchor items required in the absence/presence of moderate model misfit was investigated in small to medium sample sizes. Effects on the link outcome were operationalized as bias, relative bias, and root mean square error of the estimated sample mean and variance of the latent variable. In the light of this limited context, concurrent calibration had substantial convergence issues, while the other methods resulted in an overall satisfying and similar parameter recovery-even in the presence of moderate model misfit. Our findings suggest that in case of model misfit, the share of anchor items should exceed 20% as is currently proposed in the literature. Future studies should further investigate the effects of anchor item composition regarding unbalanced model misfit.

12.
Front Immunol ; 12: 668654, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054838

RESUMEN

Chronic low-grade inflammation is a hallmark of obesity and associated with cardiovascular complications. However, it remains unclear where this inflammation starts. As the gut is constantly exposed to food, gut microbiota, and metabolites, we hypothesized that mucosal immunity triggers an innate inflammatory response in obesity. We characterized five distinct macrophage subpopulations (P1-P5) along the gastrointestinal tract and blood monocyte subpopulations (classical, non-classical, intermediate), which replenish intestinal macrophages, in non-obese (BMI<27kg/m2) and obese individuals (BMI>32kg/m2). To elucidate factors that potentially trigger gut inflammation, we correlated these subpopulations with cardiovascular risk factors and lifestyle behaviors. In obese individuals, we found higher pro-inflammatory macrophages in the stomach, duodenum, and colon. Intermediate blood monocytes were also increased in obesity, suggesting enhanced recruitment to the gut. We identified unhealthy lifestyle habits as potential triggers of gut and systemic inflammation (i.e., low vegetable intake, high processed meat consumption, sedentary lifestyle). Cardiovascular risk factors other than body weight did not affect the innate immune response. Thus, obesity in humans is characterized by gut inflammation as shown by accumulation of pro-inflammatory intestinal macrophages, potentially via recruited blood monocytes. Understanding gut innate immunity in human obesity might open up new targets for immune-modulatory treatments in metabolic disease.


Asunto(s)
Gastroenteritis/inmunología , Inmunidad Innata , Inmunidad Mucosa , Intestinos/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Índice de Masa Corporal , Estudios de Casos y Controles , Dieta/efectos adversos , Femenino , Gastroenteritis/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Fenotipo , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Conducta Sedentaria
13.
Obes Surg ; 30(9): 3561-3569, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32500274

RESUMEN

The evidence is strong that bariatric surgery is superior to medical treatment in terms of weight loss and comorbidities in patients with severe obesity. However, a considerable part of patients presents with unsatisfactory response in the long term. It remains unclear whether postoperative administration of glucagon-like peptide-1 analogues can promote additional benefits. Therefore, a systematic review of the current literature on the management of postoperative GLP-1 analogue usage after metabolic surgery was performed. From 4663 identified articles, 6 met the inclusion criteria, but only one was a randomized controlled trial. The papers reviewed revealed that GLP-1 analogues may have beneficial effects on additional weight loss and T2D remission postoperatively. Thus, the use of GLP-1 analogues in addition to surgery promises good results concerning weight loss and improvements of comorbidities and can be used in patients with unsatisfactory results after bariatric surgery.


Asunto(s)
Cirugía Bariátrica , Terapias Complementarias , Diabetes Mellitus Tipo 2 , Obesidad Mórbida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Humanos , Obesidad Mórbida/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Sci Rep ; 10(1): 3035, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080229

RESUMEN

Gestational diabetes mellitus (GDM) is one of the most common diseases associated with pregnancy, however, the underlying mechanisms remain unclear. Based on the well documented role of inflammation in type 2 diabetes, the aim was to investigate the role of inflammation in GDM. We established a mouse model for GDM on the basis of its two major risk factors, obesity and aging. In these GDM mice, we observed increased Interleukin-1ß (IL-1ß) expression in the uterus and the placenta along with elevated circulating IL-1ß concentrations compared to normoglycemic pregnant mice. Treatment with an anti-IL-1ß antibody improved glucose-tolerance of GDM mice without apparent deleterious effects for the fetus. Finally, IL-1ß antagonism showed a tendency for reduced plasma corticosterone concentrations, possibly explaining the metabolic improvement. We conclude that IL-1ß is a causal driver of impaired glucose tolerance in GDM.


Asunto(s)
Diabetes Gestacional/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Animales , Diabetes Gestacional/sangre , Modelos Animales de Enfermedad , Femenino , Hormonas/sangre , Hiperglucemia/sangre , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Embarazo , Esteroides/sangre
16.
Sci Rep ; 8(1): 15331, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333571

RESUMEN

Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD.


Asunto(s)
Mesilato de Imatinib/farmacología , Inflamación/prevención & control , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA