RESUMEN
This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.
Asunto(s)
Teléfono Celular , Espectroscopía de Resonancia por Spin del Electrón/métodos , Vidrio , Radiometría/métodos , Calibración , Humanos , Estadística como AsuntoRESUMEN
The United States Navy monitors the dose its radiation workers receive using the DT-702/PD thermoluminescent dosimeter, which consists of the Harshaw 8840 holder and the four-element Harshaw 8841 card. There were two main objectives of this research. In the first objective, the dosimeters were exposed to 100 Gy using electron and x-ray beams and found to respond approximately 30-40% lower than the delivered dose. No significant effect on the under-response was found when dose rate, radiation type, dosimeter position on the phantom, and dosimeter material were varied or when the card was irradiated while enclosed in its holder. Since the current naval policy is to remove from occupational use any thermoluminescent dosimeter with an accumulated deep dose equivalent of 0.05 Sv or greater, the functionality of the dosimeter was also investigated at deep dose equivalents of 0.05, 0.15, and 0.25 Sv using 60Co and 137Cs sources as the second main objective. All dosimeters were annealed following exposure and then exposed to 5.0 mSv from a 90Sr source. In all cases, the dosimeters responded within 3% of the delivered dose, indicating that the dosimeters remained functional as defined by naval dosimetry requirements. However, the anneal time required to clear the thermoluminescent dosimeter's reading was found to increase approximately as the cube root with the delivered dose.
Asunto(s)
Dosimetría Termoluminiscente , Relación Dosis-Respuesta en la Radiación , Fluoruros/química , Compuestos de Litio/química , Monitoreo de RadiaciónRESUMEN
The present communication describes the technical aspects of the first application of an imaging plate for visualization of (90)Sr deposited in human teeth. The teeth were obtained from Techa River area residents who were exposed as a result of releases of radioactivity into the Techa River by the first Soviet nuclear plant Mayak in the early 1950s. The investigations form the basis for an experimental procedure for accurate mapping of the distribution of (90)Sr in teeth with an imaging plate. This new method can be used as an individual indicator of radionuclide intake. Its advantages are its high sensitivity (0.02 Bq/g mm(-2) of (90)Sr), it ability to examine small detectable cross-sectional areas of dental tissue (dentin) contaminated with (90)Sr (from 0.01 mm(2)), the nondestructive method of analysis, and the simplicity of use. The combined application of this method with EPR tooth biodosimetry can provide more accurate dose reconstruction and may lead to more effective radiation risk assessment.
Asunto(s)
Radiometría/instrumentación , Radioisótopos de Estroncio/metabolismo , Diente/metabolismo , Calibración , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Federación de RusiaRESUMEN
Imaging plates sensitive to beta rays were used to obtain the images of 90Sr in tooth samples taken from mammals collected in contaminated areas of the former Soviet Union. The average concentrations of 90Sr in the samples were determined by comparing the intensities of the luminescence using a single crystal of KCl. The results showed that the determined 90Sr concentration has a positive correlation with the soil contamination levels in the South Ural region. Tooth samples from both inside of the Semipalatinsk nuclear test site and the villages nearby have detectable amounts of 90Sr, indicating the possible presence of residual soil contamination. The present study demonstrates that using imaging plates is a very sensitive method to detect 90Sr in teeth as well as to estimate low-level 90Sr contamination in soil.