Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408023

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

2.
Angew Chem Int Ed Engl ; 61(26): e202202012, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35393733

RESUMEN

The planar SnO2 electron transport layer (ETL) has contributed to the reported power conversion efficiency (PCE) record of perovskite solar cells (PSCs), while the high-temperature mesoporous SnO2 ETL (mp-SnO2 ) brings poor device performance. Herein, we report the application of mp-SnO2 for efficient printable PSCs via oxygen vacancy (OV) management by introducing magnesium (Mg) into the paste. We find that high-temperature annealing suppresses self-doping of SnO2 by reducing OVs. The introduced Mg occupies both the Sn site and interstitial site of SnO2 and promotes the formation of OVs. Lattice Mg tends to induce neutral OVs and interstitial Mg could promote the ionization of neutral OVs for self-doping. The synergy effect on OVs increases the carrier density and upshifts the Fermi level energy of mp-SnO2 , ensuring its capability as the well-performed ETL with trap-less charge transport and suppressed surface recombination for dramatic improved device PCE from 6.62 % to 17.25 %.

3.
Nano Lett ; 20(11): 8178-8184, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125246

RESUMEN

Stable electron transport materials (ETMs) with fewer surface defects and proper energy level alignments with halide perovskite active layers are required for efficient perovskite solar cells (PSCs) with long-term durability. Here, two-dimensional van der Waals mixed valence tin oxides Sn2O3 and Sn3O4 are controllably synthesized and applied as ETMs for planar PSCs. The synthesized Sn2O3 and Sn3O4 have size of 5-20 nm and disperse well in water as stable colloids for months. Both Sn2O3 and Sn3O4 exhibit typical n-type semiconductor energy band structures, low trap density, and suitable energy level alignments with halide perovskites. Steady-state power conversion efficiencies (PCEs) of 22.36% and 21.83% are obtained for Sn2O3-based and Sn3O4-based planar PSCs. In addition, the half cells without hole transport materials and back electrodes show good UV-stability with average PCE of 99.0% and 95.7% for Sn2O3-based and Sn3O4-based devices remaining after 1000 h of ultraviolet soaking with an intensity of 70 mW cm-2.

4.
J Am Chem Soc ; 137(15): 4956-9, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25826124

RESUMEN

We report here the first successful demonstration of a "π-conjugated redox polymer" simultaneously featuring a π-conjugated backbone and integrated redox sites, which can be stably and reversibly n-doped to a high doping level of 2.0 with significantly enhanced electronic conductivity. The properties of such a heavily n-dopable polymer, poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)), were compared vis-à-vis to those of the corresponding backbone-insulated poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-[2,2'-(1,2-ethanediyl)bithiophene]} (P(NDI2OD-TET)). When evaluated as a charge storage material for rechargeable Li batteries, P(NDI2OD-T2) delivers 95% of its theoretical capacity at a high rate of 100C (72 s per charge-discharge cycle) under practical measurement conditions as well as 96% capacity retention after 3000 cycles of deep discharge-charge. Electrochemical, impedance, and charge-transport measurements unambiguously demonstrate that the ultrafast electrode kinetics of P(NDI2OD-T2) are attributed to the high electronic conductivity of the polymer in the heavily n-doped state.

5.
Phys Chem Chem Phys ; 16(33): 17743-7, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25030303

RESUMEN

We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 µm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.

6.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37632843

RESUMEN

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

7.
Front Optoelectron ; 16(1): 25, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747592

RESUMEN

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

8.
Science ; 379(6629): 288-294, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656941

RESUMEN

High-quality perovskite light harvesters and robust organic hole extraction layers are essential for achieving high-performing perovskite solar cells (PSCs). We introduce a phosphonic acid-functionalized fullerene derivative in mixed-cation perovskites as a grain boundary modulator to consolidate the crystal structure, which enhances the tolerance of the film against illumination, heat, and moisture. We also developed a redox-active radical polymer, poly(oxoammonium salt), that can effectively p-dope the hole-transporting material by hole injection and that also mitigates lithium ion diffusion. Power conversion efficiencies of 23.5% for 1-square-centimeter mixed-cation-anion PSCs and 21.4% for 17.1-square-centimeter minimodules were achieved. The PSCs retained 95.5% of their initial efficiencies after 3265 hours at maximum power point tracking under continuous 1-sun illumination at 70° ± 5°C.

9.
Phys Chem Chem Phys ; 14(41): 14383-90, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23010982

RESUMEN

A new thiolate/disulfide mediator was designed and synthesized by employing DFT calculations as a guide. It possesses high transparency to visible light, a very attractive feature for bifacially active transparent DSCs that require a highly transparent counter electrode (CE). Compared to the reported and most promising thiolate/disulfide mediator T(-)/T(2), this new analogous mediator produced a major enhancement in open circuit potential (V(OC)) by about 40 mV and correspondingly a higher power conversion efficiency (η) for DSCs. Furthermore, a highly uniform and transparent (transmittance > 91%) poly(3,4-ethylenedioxythiophene) (PEDOT(BE)) CE was prepared and could efficiently catalyze the reduction of the disulfide. Based on the novel transparent redox couple and PEDOT(BE) CE, a new type of iodine-free and Pt-free transparent bifacial DSC was successfully fabricated. This new bifacial device could not only yield a promising front-illuminated η of 6.07%, but also produce an attractive η as high as 4.35% for rear-side irradiation, which exceeds the rear-illuminated η of 3.93% achieved for the same type of device, employing the dark-colored I(-)/I(3)(-) electrolyte.

10.
Chem Sci ; 13(8): 2167-2183, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310498

RESUMEN

Perovskite materials have been particularly eye-catching by virtue of their excellent properties such as high light absorption coefficient, long carrier lifetime, low exciton binding energy and ambipolar transmission (perovskites have the characteristics of transporting both electrons and holes). Limited by the wider band gap (1.55 eV), worse thermal stability and more defect states, the first widely used methylammonium lead iodide has been gradually replaced by formamidinium lead iodide (FAPbI3) with a narrower band gap of 1.48 eV and better thermal stability. However, FAPbI3 is stabilized as the yellow non-perovskite active phase at low temperatures, and the required black phase (α-FAPbI3) can only be obtained at high temperatures. In this perspective, we summarize the current efforts to stabilize α-FAPbI3, and propose that pure α-FAPbI3 is an ideal material for single-junction cells, and a triple-layer mesoporous architecture could help to stabilize pure α-FAPbI3. Furthermore, reducing the band gap and using tandem solar cells may ulteriorly approach the Shockley-Queisser limit efficiency. We also make a prospect that the enhancement of industrial applications as well as the lifetime of devices may help achieve commercialization of PSCs in the future.

11.
Small Methods ; 6(6): e2200161, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35466596

RESUMEN

Triple-mesoscopic perovskite solar cells (PSCs) have attracted intensive attention due to the high stability, simple fabrication process, and low material cost. In this structure, the perovskite layer is hosted by a triple-mesoscopic scaffold of TiO2 /ZrO2 /carbon, and thus the crystal quality is sensitive to the thermal annealing process. Typically, the annealing process is conducted in a petri dish, for which the solvent evaporation of the perovskite precursor is slowed down, but not controllable and designable. To control the solvent evaporation, annealing chambers are first designed with different shape and vapor releasing channels. Then, physical simulations are performed by a finite element method, and it is found out that the chamber with a crowned top and releasing channels on the bottom sides can realize homogeneous distribution of the solvent vapor. To verify the simulation results, chambers are fabricated by 3D printing technique, for which the printing deviation can be as low as 100 µm. By balancing the solvent evaporation and release, the optimal solvent evaporation is achieved of the perovskite precursor in the triple-mesoscopic scaffold. This work offers a method to obtain homogeneous distribution of solvent vapor, and provides a new insight into understanding the influence of solvent evaporation during the thermal annealing process for PSCs.

12.
Natl Sci Rev ; 9(11): nwac183, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381218

RESUMEN

The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li+ transference number and induce the formation of 'LiF-NFs-rich' solid-electrolyte interface (SEI). In the 'LiF-NFs-rich' SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li+ transport path. Moreover, the formed Li-LiF interface between Li-metal and SEI film renders low Li nucleation and high Li+ migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge-discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm-2 and 400 stable cycles under a high area capacity of 5.65 mAh cm-2 in a high-loading Li//rGO-S cell at 17.9 mA cm-2 could be achieved. The free-standing LiF-NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries.

13.
J Phys Chem Lett ; 13(9): 2144-2149, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226499

RESUMEN

Perovskite solar cells (PSCs) have achieved high efficiencies with diversified device architectures. In particular, printable mesoscopic PSC has attracted intensive research attention due to its simple fabrication process and superior stability. However, in the absence of hole conductors, the unfavorable energy band alignment between the perovskite and the carbon electrode usually leads to the reduction of device performance, especially the open-circuit voltage (VOC). Here, a p-type molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), is utilized to post-treat the perovskite/carbon interface, which benefits the charge transfer and suppresses the charge recombination within the device. As a result, the post-treated device delivers a power conversion efficiency of 18.05% with an enhanced VOC of 1044 mV. This work provides a facile method for tuning the interfacial energy band alignment and improving performance of printable mesoscopic PSCs.

14.
Adv Sci (Weinh) ; 9(5): e2103948, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34923773

RESUMEN

Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.

15.
Fundam Res ; 2(2): 276-283, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933159

RESUMEN

Highly crystalline perovskite films with large grains and few grain boundaries are conducive for efficient and stable perovskite solar cells. Current methods for preparing perovskite films are mostly based on a fast crystallization process, with rapid nucleation and insufficient growth. In this study, MAPbI3 perovskite with inhibited nucleation and promoted growth in the TiO2/ZrO2/carbon triple mesoscopic scaffold was crystallized by modulating the precursor and the crystallization process. N-methylformamide showed high solubility for both methylammonium iodide and PbI2 and hampered the formation of large colloids in the MAPbI3 precursor solution. Furthermore, methylammonium chloride was added to reduce large colloids, which are a possible source of nucleation sites. During the crystallization of MAPbI3, the solvent was removed at a slow controlled speed, to avoid rapid nucleation and provide sufficient time for crystal growth. As a result, highly oriented MAPbI3 crystals with suppressed non-radiative recombination and promoted charge transport were obtained in the triple mesoscopic layer with disordered pores. The corresponding hole-conductor-free, printable mesoscopic perovskite solar cells exhibited a highest power conversion efficiency of 18.82%. The device also exhibited promising long-term operational stability of 1000 h under continuous illumination at maximum power point at 55 ± 5 °C and damp-heat stability of 1340 h aging at 85 °C as well as 85% relative humidity.

16.
J Nanosci Nanotechnol ; 11(11): 9645-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22413263

RESUMEN

CdPbS quantum dots-sensitized TiO2 photoelectrode was prepared using chemical bath codeposition technique by dipping TiO2 film into a 0.5 M Cd(NO3)2-Pb(NO3)2 solution (molar ratio 9:1) and a 0.5 M Na2S methanol solution. The CdPbS quantum dots have the size about 4 to 6 nm and distribute homogeneously in the TiO2 film. The as-prepared electrode showed improved absorption spectra. The assembled quantum dots-sensitized solar cell (QDSSC) yielded a power conversion efficiency (nu) of 1.88% and a short-circuit current of 15.28 mA/cm2 under AM 1.5 illumination of 100 mW/cm2, far outperformed the single PbS, CdS QDSSC and the nu increased 49.2% than coupled PbS/CdS QDSSC. The solar cell presented IPCE peak value of 45.7% and the effective photovoltaic range covers the visible region and near infrared region.

17.
Chem Commun (Camb) ; 57(50): 6125-6128, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34075950

RESUMEN

The anion exchange between MAPbX3 (X = I- or Br-) and MAX salts in a solution environment is investigated. We find that I- can enter MAPbBr3 single crystals (SC) in millimeter scale, while Br- can only penetrate the surface of MAPbI3 SC in a micrometer scale. Due to the lattice variation, the reaction is partially reversible.

18.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327634

RESUMEN

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current-voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.

19.
Front Optoelectron ; 13(3): 256-264, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36641571

RESUMEN

Over the last decade, the power conversion efficiency of hybrid organic-inorganic perovskite solar cells (PSCs) has increased dramatically from 3.8% to 25.2%. This rapid progress has been possible due to the accurate control of the morphology and crystallinity of solution-processed perovskites, which are significantly affected by the concentration of the precursor used. This study explores the influence of precursor concentrations on the performance of printable hole-conductor-free mesoscopic PSCs via a simple one-step drop-coating method. The results reveal that lower concentrations lead to larger grains with inferior pore filling, while higher concentrations result in smaller grains with improved pore filling. Among concentrations ranging from 0.24-1.20 M1), devices based on a moderate strength of 0.70 M were confirmed to exhibit the best efficiency at 16.32%.

20.
J Phys Chem Lett ; 11(22): 9689-9695, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33136402

RESUMEN

The all-inorganic CsPb(IxBr1-x)3 (0 ≤ x ≤ 1) perovskite solar cells (PSCs) are attractive by virtue of their high environmental and thermal stability. Nevertheless, multiple-step deposition and high annealing temperature (>250 °C) and the structural and optoelectronic properties changes upon temperature-dependent phase-transition are potential impediments for highly efficient and stable PSCs. Herein, a space-confined method to fabricate stable lower-order symmetric pure monoclinic CsPbBr3 phase at low temperature (<50 °C) is for the first time reported. It is found that the carbon-based mesoporous fully printable area can inhibit the phase transition to get a pure phase. Therefore, the device exhibits a power conversion efficiency of 7.52% with a low hysteresis index of 0.024. Moreover, the device passed the 1000 h 85 °C thermal test and the 200 cycles thermal cycling test according to IEC-61625 stability tests. These are critical progresses for achieving long-term stability and the stable pure inorganic perovskite phase of high-performance photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA