Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562402

RESUMEN

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Asunto(s)
Médula Ósea , Enfermedades del Sistema Nervioso , Cráneo , Animales , Humanos , Ratones , Médula Ósea/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Cráneo/citología , Cráneo/diagnóstico por imagen
2.
Cell ; 185(26): 5040-5058.e19, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563667

RESUMEN

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.


Asunto(s)
Enfermedad de Alzheimer , Proteoma , Ratones , Humanos , Animales , Proteoma/análisis , Proteómica/métodos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Espectrometría de Masas , Placa Amiloide
3.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059778

RESUMEN

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/normas , Riñón/diagnóstico por imagen , Límite de Detección , Masculino , Ratones , Persona de Mediana Edad , Imagen Óptica/normas , Páncreas/diagnóstico por imagen , Coloración y Etiquetado/normas , Porcinos , Glándula Tiroides/diagnóstico por imagen
4.
Cell ; 179(7): 1661-1676.e19, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835038

RESUMEN

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.


Asunto(s)
Anticuerpos/uso terapéutico , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Quimioterapia Asistida por Computador/métodos , Neoplasias/patología , Animales , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Metástasis de la Neoplasia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Programas Informáticos , Microambiente Tumoral
5.
Nat Methods ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649742

RESUMEN

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.

6.
FASEB J ; 34(8): 10984-10997, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32613609

RESUMEN

Mutation of Triggering receptor expressed on myeloid cells 2 (TREM2) impairs the response of microglia to amyloid-ß (Aß) pathology in Alzheimer's disease (AD), although the mechanism governing TREM2-regulated microglia recruitment to Aß plaques remains unresolved. Here, we confirm that TREM2 mutation attenuates microglial migration. Then, using Trem2-/- mice and an R47H variant mouse model for AD generated for this study, we show that TREM2 deficiency or the AD-associated R47H mutation results in inhibition of FAK and Rac1/Cdc42-GTPase signaling critical for cell migration. Intriguingly, treatment with CN04, a Rac1/Cdc42-GTPase activator, partially enhances microglial migration in response to oligomeric Aß42 in Trem2-/- or R47H microglia both in vitro and in vivo. Our study shows that the dysfunction of microglial migration in the AD-associated TREM2 R47H variant is caused by FAK/Rac1/Cdc42 signaling disruption, and that activation of this signaling ameliorates impaired microglial migration response to Aß42 , suggesting a therapeutic target for R47H-bearing patients with high risk of AD.


Asunto(s)
Péptidos beta-Amiloides/genética , Movimiento Celular/genética , Quinasa 1 de Adhesión Focal/genética , GTP Fosfohidrolasas/genética , Microglía/patología , Células Mieloides/metabolismo , Neuropéptidos/genética , Fragmentos de Péptidos/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Mutación con Pérdida de Función/genética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Células Mieloides/patología , Transducción de Señal/genética
7.
Neuroimmunomodulation ; 26(2): 67-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30928987

RESUMEN

OBJECTIVE(S): Neuroinflammation is an important contributor to the development of seizures and epilepsy. Micro-RNA-155 (miR-155) plays a critical role in immunity and -inflammation. This study aims to explore the function of miR-155 and miR-155-mediated inflammation in epilepsy. METHODS: About 8-week-old male C57BL/6 mice were administered an intraperitoneal injection (i.p.) of kainic acid (KA) (15 mg/kg) or saline. The mice in the KA group developing acute seizure were further subjected to intracerebroventricular injection (i.c.v.) of antagomir negative control (NC) or miR-155 antagomir. Animal behavior was observed according to Racine's scale, and electroencephalographs were recorded. Primary microglia were cultured and treated with antagomir NC or antagomir. Whole-cell electrophysiological recording was conducted to detect the spontaneous EPSCs and IPSCs in the neurons treated with different conditioned medium from those microglia. miR-155 were detected by qRT-PCR in those models, as well as in the brain or blood from epileptic patients and healthy controls. RESULTS: miR-155 was abundantly expressed in glial cells compared with neurons, and its expression was markedly elevated in the brain of epilepsy patients and KA-induced seizure mice. Silencing miR-155 attenuated KA-induced seizure, abnormal electroencephalography, proinflammatory cytokine expression, and microglia morphology change. Moreover, conditioned media from KA-treated microglia impaired neuron excitability, whereas conditioned media from KA and miR-155 antagomir co-treated microglia had no such effects. Finally, miR-155 levels were significantly higher in the blood of epilepsy patients than those of healthy controls. CONCLUSION(S): These findings demonstrate that aberrant upregulation of miR-155 contributes to epileptogenesis through inducing microglia neuroinflammation.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , Convulsiones/metabolismo , Adulto , Animales , Convulsivantes/toxicidad , Epilepsia del Lóbulo Temporal/inmunología , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/inmunología , Microglía/inmunología , Convulsiones/inducido químicamente , Convulsiones/inmunología
8.
J Neurosci ; 37(7): 1772-1784, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077724

RESUMEN

Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which is expressed on myeloid cells including microglia in the CNS, has recently been identified as a risk factor for Alzheimer's disease (AD). TREM2 transmits intracellular signals through its transmembrane binding partner DNAX-activating protein 12 (DAP12). Homozygous mutations inactivating TREM2 or DAP12 lead to Nasu-Hakola disease; however, how AD risk-conferring variants increase AD risk is not clear. To elucidate the signaling pathways underlying reduced TREM2 expression or loss of function in microglia, we respectively knocked down and knocked out the expression of TREM2 in in vitro and in vivo models. We found that TREM2 deficiency reduced the viability and proliferation of primary microglia, reduced microgliosis in Trem2-/- mouse brains, induced cell cycle arrest at the G1/S checkpoint, and decreased the stability of ß-catenin, a key component of the canonical Wnt signaling pathway responsible for maintaining many biological processes, including cell survival. TREM2 stabilized ß-catenin by inhibiting its degradation via the Akt/GSK3ß signaling pathway. More importantly, treatment with Wnt3a, LiCl, or TDZD-8, which activates the ß-catenin-mediated Wnt signaling pathway, rescued microglia survival and microgliosis in Trem2-/- microglia and/or in Trem2-/- mouse brain. Together, our studies demonstrate a critical role of TREM2-mediated Wnt/ß-catenin pathway in microglial viability and suggest that modulating this pathway therapeutically may help to combat the impaired microglial survival and microgliosis associated with AD.SIGNIFICANCE STATEMENT Mutations in the TREM2 (Triggering Receptor Expressed on Myeloid cells 2) gene are associated with increased risk for Alzheimer's disease (AD) with effective sizes comparable to that of the apolipoprotein E (APOE) ε4 allele, making it imperative to understand the molecular pathway(s) underlying TREM2 function in microglia. Our findings shed new light on the relationship between TREM2/DNAX-activating protein 12 (DAP12) signaling and Wnt/ß-catenin signaling and provide clues as to how reduced TREM2 function might impair microglial survival in AD pathogenesis. We demonstrate that TREM2 promotes microglial survival by activating the Wnt/ß-catenin signaling pathway and that it is possible to restore Wnt/ß-catenin signaling when TREM2 activity is disrupted or reduced. Therefore, we demonstrate the potential for manipulating the TREM2/ß-catenin signaling pathway for the treatment of AD.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Recién Nacidos , Encéfalo/citología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ácido Kaínico/farmacología , Cloruro de Litio/farmacología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores Inmunológicos/genética , Tiadiazoles/farmacología , Vía de Señalización Wnt/efectos de los fármacos
9.
Nat Protoc ; 17(10): 2188-2215, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35859136

RESUMEN

Advances in tissue labeling and clearing methods include improvement of tissue transparency, better preservation of fluorescence signal, compatibility with immunostaining and large sample volumes. However, as existing methods share the common limitation that they can only be applied to human tissue slices, rendering intact human organs transparent remains a challenge. Here, we describe experimental details of the small-micelle-mediated human organ efficient clearing and labeling (SHANEL) pipeline, which can be applied for cellular mapping of intact human organs. We have successfully cleared multiple human organs, including kidney, pancreas, heart, lung, spleen and brain, as well as hard tissue like skull. We also describe an advanced volumetric imaging system using a commercial light-sheet fluorescence microscope that can accommodate most human organs and a pipeline for whole-organ imaging and visualization. The complete experimental process of labeling and clearing whole human organs takes months and the analysis process takes several weeks, depending on the organ types and sizes.


Asunto(s)
Encéfalo , Micelas , Fluorescencia , Humanos , Imagenología Tridimensional/métodos , Riñón , Páncreas
10.
Front Immunol ; 12: 633796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841415

RESUMEN

Triggering receptor expressed on myeloid cells-2 (TREM2) and colony-stimulating factor 1 receptor (CSF1R) are crucial molecules for microgliopathy, which is characterized by microglia dysfunction and has recently been proposed as the neuropathological hallmark of neurological disorders. TREM2 and CSF1R are receptors expressed primarily in microglia in the brain and modulate microglial activation and survival. They are thought to be in close physical proximity. However, whether there is a direct interaction between these receptors remains elusive. Moreover, the physiological role and mechanism of the interaction of TREM2 and CSF1R remain to be determined. Here, we found that TREM2 interacted with CSF1R based on a co-immunoprecipitation assay. Additionally, we found that CSF1R knockdown significantly reduced the survival of primary microglia and increased the Trem2 mRNA level. In contrast, CSF1R expression was increased in Trem2-deficient microglia. Interestingly, administration of CSF1, the ligand of CSF1R, partially restored the survival of Trem2-deficient microglia in vitro and in vivo. Furthermore, CSF1 ameliorated Aß plaques deposition in Trem2-/-; 5XFAD mouse brain. These findings provide solid evidence that TREM2 and CSF1R have intrinsic abilities to form complexes and mutually modulate their expression. These findings also indicate the potential role of CSF1 in therapeutic intervention in TREM2 variant-bearing patients with a high risk of Alzheimer's disease (AD).


Asunto(s)
Supervivencia Celular , Glicoproteínas de Membrana/metabolismo , Microglía/fisiología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunoprecipitación , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología
11.
Nat Commun ; 11(1): 5626, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159057

RESUMEN

Whole-body imaging of mice is a key source of information for research. Organ segmentation is a prerequisite for quantitative analysis but is a tedious and error-prone task if done manually. Here, we present a deep learning solution called AIMOS that automatically segments major organs (brain, lungs, heart, liver, kidneys, spleen, bladder, stomach, intestine) and the skeleton in less than a second, orders of magnitude faster than prior algorithms. AIMOS matches or exceeds the segmentation quality of state-of-the-art approaches and of human experts. We exemplify direct applicability for biomedical research for localizing cancer metastases. Furthermore, we show that expert annotations are subject to human error and bias. As a consequence, we show that at least two independently created annotations are needed to assess model performance. Importantly, AIMOS addresses the issue of human bias by identifying the regions where humans are most likely to disagree, and thereby localizes and quantifies this uncertainty for improved downstream analysis. In summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias, and foster reproducibility in many areas of biomedical research.


Asunto(s)
Estructuras Animales/diagnóstico por imagen , Aprendizaje Profundo , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Femenino , Procesamiento de Imagen Asistido por Computador , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Bazo/diagnóstico por imagen , Imagen de Cuerpo Entero , Microtomografía por Rayos X
12.
Front Aging Neurosci ; 10: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29467647

RESUMEN

Frontotemporal dementia includes a large spectrum of neurodegenerative disorders. SQSTM1, coding for p62 protein, plays a vital role in the pathogenesis of FTD. Here, we report a case of a female patient with SQSTM1 mutation S224X, who was 59 years old when she initially exhibited memory decline, mild personality changes, and subtle atrophy of frontal/temporal lobes in magnetic resonance imaging (MRI). Genetic testing revealed a nonsense mutation of the SQSTM1 gene (S224X), resulting in premature termination of protein synthesis and a predicted truncated protein 217 amino acids shorter than the normal protein. Moreover, neither intact nor truncated SQSTM1 proteins was detectable in SQSTM1 S224X mutant overexpressing HEK-293T cells. We assayed for SQSTM1 cDNA in samples from the patient's peripheral leucocytes, and did not detect its mutation. The test of quantitative PCR showed significant decreased level of SQSTM1 mRNA from peripheral leucocytes of the patient compared to five dementia controls. Our results identify a novel pathogenic SQSTM1 S224X mutation in an atypical FTD patient accompanied with loss of SQSTM1/p62 protein expression probably due to SQSTM1 gene haploinsufficiency.

13.
Front Pharmacol ; 9: 734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050437

RESUMEN

Epilepsy is a common neurological disease with recurrent seizures and neurobehavioral comorbidities, including cognitive impairment and psychiatric disorders. Recent studies suggest that L-3-n-butylphthalide (NBP), an extract from the seeds of Apium graveolens Linn. (Chinese celery), ameliorates cognitive dysfunction in ischemia and/or Alzheimer's disease animal models. However, little is known about the role of NBP in epilepsy and the associated comorbidities. Here, using a pilocarpine-induced chronic epileptic mouse model, we found that NBP supplement not only alleviated seizure severity and abnormal electroencephalogram, but also rescued cognitive and emotional impairments in these epileptic mice. The possible underlying mechanisms may be associated with the protective role of NBP in reducing neuronal loss and in restoring the expression of neural synaptic proteins such as postsynaptic density protein 95 (PSD95) and glutamic acid decarboxylase 65/67 (GAD65/67). In addition, NBP treatment increased the transcription of neuroprotective factors, brain-derived neurotrophic factor and Klotho. These findings suggest that NBP treatment may be a potential strategy for ameliorating epileptogenesis and the comorbidities of cognitive and psychological impairments.

14.
Neurobiol Aging ; 50: 168.e1-168.e4, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27836335

RESUMEN

A subset of Alzheimer's disease (AD) occurrence shows autosomal dominant, familial inheritance patterns. Such familial AD (FAD) are caused by mutations in APP, PSEN1, and PSEN2 genes, which encode amyloid-ß (Aß) precursor protein, presenilin 1 (PS1), and presenilin 2 (PS2), respectively. Here, we report a novel PSEN1 mutation (c.1164C > G, p.F388L, mutation nomenclature according to National Center for Biotechnology Information Reference Sequence: NM_000021.3) occurring in a Chinese family with early-onset AD and cosegregating with affected family members. The average age at onset of this family was 43 years. The F388L mutation locates adjacent to the critical catalytic aspartate site (D385) of PS1. Overexpression of the F388L mutant significantly increased Aß42 secretion and the ratio of Aß42/Aß40 when compared with wild type PS1, consisting with the notion that FAD-associated PS1 mutations induce disease pathogenesis by increasing Aß42/Aß40 ratio. Our results identify a novel pathogenic PS1 F388L mutation in a Chinese FAD family.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Mutación , Presenilina-1/genética , Adulto , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Pueblo Asiatico/genética , Femenino , Expresión Génica/genética , Pruebas Genéticas , Humanos , Fragmentos de Péptidos/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA