Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Med ; 22(1): 129, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519887

RESUMEN

BACKGROUND: There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS: The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS: Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS: In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.


Asunto(s)
Infecciones por VIH , Complicaciones Infecciosas del Embarazo , Lactante , Humanos , Embarazo , Femenino , Complicaciones Infecciosas del Embarazo/diagnóstico por imagen , Complicaciones Infecciosas del Embarazo/epidemiología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Estudios de Cohortes , Sudáfrica/epidemiología , Estudios Prospectivos , Encéfalo/diagnóstico por imagen
2.
Acta Neuropsychiatr ; 36(2): 87-96, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36700449

RESUMEN

The current small study utilised prospective data collection of patterns of prenatal alcohol and tobacco exposure (PAE and PTE) to examine associations with structural brain outcomes in 6-year-olds and served as a pilot to determine the value of prospective data describing community-level patterns of PAE and PTE in a non-clinical sample of children. Participants from the Safe Passage Study in pregnancy were approached when their child was ∼6 years old and completed structural brain magnetic resonance imaging to examine with archived PAE and PTE data (n = 51 children-mother dyads). Linear regression was used to conduct whole-brain structural analyses, with false-discovery rate (FDR) correction, to examine: (a) main effects of PAE, PTE and their interaction; and (b) predictive potential of data that reflect patterns of PAE and PTE (e.g. quantity, frequency and timing (QFT)). Associations between PAE, PTE and their interaction with brain structural measures demonstrated unique profiles of cortical and subcortical alterations that were distinct between PAE only, PTE only and their interactive effects. Analyses examining associations between patterns of PAE and PTE (e.g. QFT) were able to significantly detect brain alterations (that survived FDR correction) in this small non-clinical sample of children. These findings support the hypothesis that considering QFT and co-exposures is important for identifying brain alterations following PAE and/or PTE in a small group of young children. Current results demonstrate that teratogenic outcomes on brain structure differ as a function PAE, PTE or their co-exposures, as well as the pattern (QFT) or exposure.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Niño , Embarazo , Femenino , Humanos , Preescolar , Proyectos Piloto , Sudáfrica , Encéfalo/patología , Imagen por Resonancia Magnética
3.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964373

RESUMEN

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Transversales , Imagen por Resonancia Magnética , Cerebelo , Encéfalo
4.
Mol Psychiatry ; 26(8): 4315-4330, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31857689

RESUMEN

A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.


Asunto(s)
Trastornos por Estrés Postraumático , Sustancia Blanca , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos por Estrés Postraumático/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
5.
Alcohol Clin Exp Res ; 46(7): 1233-1247, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35581528

RESUMEN

BACKGROUND: There is a growing literature that demonstrates the effects of prenatal alcohol exposure (PAE) on brain development in school-aged children. Less is known, however, on how PAE impacts the brain early in life. We investigated the effects of PAE and child sex on subcortical gray matter volume, cortical surface area (CSA), cortical volume (CV), and cortical thickness (CT) in children aged 2 to 3 years. METHODS: The sample was recruited as a nested cross-sectional substudy of the Drakenstein Child Health Study. Images from T1-weighted magnetic resonance imaging were acquired on 47 alcohol-exposed and 124 control children (i.e., with no or minimal alcohol exposure), aged 2 to 3 years, some of whom were scanned as neonates. Brain images were processed through automated processing pipelines using FreeSurfer version 6.0. Subcortical and a priori selected cortical regions of interest were compared. RESULTS: Subcortical volume analyses revealed a PAE by child sex interaction for bilateral putamen volumes (Left: p = 0.02; Right: p = 0.01). There was no PAE by child sex interaction effect on CSA, CV, and CT. Analyses revealed an impact of PAE on CSA (p = 0.04) and CV (p = 0.04), but not CT in this age group. Of note, the inferior parietal gyrus CSA was significantly smaller in children with PAE compared to control children. CONCLUSIONS: Findings from this subgroup scanned at age 2 to 3 years build on previously described subcortical volume differences in neonates from this cohort. Findings suggest that PAE persistently affects gray matter development through the critical early years of life. The detectable influence of PAE on brain structure at this early age further highlights the importance of brain imaging studies on the impact of PAE on the young developing brain.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Sustancia Gris , Efectos Tardíos de la Exposición Prenatal , Cohorte de Nacimiento , Encéfalo , Niño , Preescolar , Estudios Transversales , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/diagnóstico por imagen , Efectos Tardíos de la Exposición Prenatal/patología , Sudáfrica/epidemiología
6.
Mol Psychiatry ; 25(7): 1511-1525, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31471575

RESUMEN

Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.


Asunto(s)
Trastorno Depresivo Mayor/patología , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Estudios de Cohortes , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
7.
Neuroimage ; 219: 116846, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32304884

RESUMEN

Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2-3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2-3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ≥0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Desarrollo Infantil/fisiología , Cognición/fisiología , Encéfalo/fisiología , Preescolar , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Sudáfrica
8.
Depress Anxiety ; 36(2): 110-120, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30253000

RESUMEN

Despite emotion regulation being altered in patients with obsessive-compulsive disorder (OCD), no studies have investigated its relation to multimodal amygdala connectivity. We compared corticolimbic functional and structural connectivity between OCD patients and healthy controls (HCs), and correlated this with the dispositional use of emotion regulation strategies and with OCD severity. OCD patients (n = 73) and HCs (n = 42) were assessed for suppression and reappraisal strategies using the Emotion Regulation Questionnaire (ERQ) and for OCD severity using the Yale-Brown Obsessive-Compulsive Scale. Resting-state functional magnetic resonance imaging (rs-fMRI) connectivity maps were generated using subject-specific left amygdala (LA) and right amygdala (RA) masks. We identified between-group differences in amygdala whole-brain connectivity, and evaluated the moderating effect of ERQ strategies. Significant regions and amygdala seeds were used as targets in probabilistic tractography analysis. Patients scored higher in suppression and lower in reappraisal. We observed higher rs-fMRI RA-right postcentral gyrus (PCG) connectivity in HC, and in patients this was correlated with symptom severity. Reappraisal scores were associated with higher negative LA-left insula connectivity in HC, and suppression scores were negatively associated with LA-precuneus and angular gyri connectivity in OCD. Structurally, patients showed higher mean diffusivity in tracts connecting the amygdala with the other targets. RA-PCG connectivity is diminished in patients, while disrupted emotion regulation is related to altered amygdala connectivity with the insula and posterior brain regions. Our results are the first showing, from a multimodal perspective, the association between amygdala connectivity and specific emotional processing domains, emphasizing the importance of amygdala connectivity in OCD pathophysiology.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Emociones , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/psicología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
9.
Compr Psychiatry ; 80: 24-33, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28950153

RESUMEN

BACKGROUND: Methamphetamine use among pregnant women has become a significant problem. Research delineating the cognitive outcomes of prenatal methamphetamine exposure (PME) in early childhood is limited, however. The aim of this study was to examine effects of PME on cognition in six-to-seven-year-old children. METHODS: PME children (n=23) and unexposed controls (n=22) completed a battery of neurocognitive tests, which included the Kaufman Assessment Battery for Children, Boston Naming Test, Beery Developmental Test of Visual-Motor Integration, and Grooved Pegboard Test. RESULTS: Independent samples t-tests revealed that PME children scored significantly worse than controls on the measures of IQ, learning and memory, confrontation naming, visual-motor integration, and fine motor coordination. Hierarchical regression analyses that included potential confounding sociodemographic, co-exposure and anthropometric variables confirmed that PME impacts negatively on cognitive performance. CONCLUSIONS: The study confirms that PME has deleterious effects on cognition in several broad cognitive domains, likely by altering underlying brain circuitry in development. These effects may be particularly pronounced at the time when children enter formal schooling. Extended follow-ups into late childhood might help elucidate the developmental trajectory of cognitive dysfunction in PME, and subsequent effects on everyday functioning.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Metanfetamina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/psicología , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Embarazo
10.
Br J Psychiatry ; 210(1): 67-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27198485

RESUMEN

BACKGROUND: There is accumulating evidence for the role of fronto-striatal and associated circuits in obsessive-compulsive disorder (OCD) but limited and conflicting data on alterations in cortical thickness. AIMS: To investigate alterations in cortical thickness and subcortical volume in OCD. METHOD: In total, 412 patients with OCD and 368 healthy adults underwent magnetic resonance imaging scans. Between-group analysis of covariance of cortical thickness and subcortical volumes was performed and regression analyses undertaken. RESULTS: Significantly decreased cortical thickness was found in the OCD group compared with controls in the superior and inferior frontal, precentral, posterior cingulate, middle temporal, inferior parietal and precuneus gyri. There was also a group × age interaction in the parietal cortex, with increased thinning with age in the OCD group relative to controls. CONCLUSIONS: Our findings are partially consistent with earlier work, suggesting that group differences in grey matter volume and cortical thickness could relate to the same underlying pathology of OCD. They partially support a frontostriatal model of OCD, but also suggest that limbic, temporal and parietal regions play a role in the pathophysiology of the disorder. The group × age interaction effects may be the result of altered neuroplasticity.


Asunto(s)
Corteza Cerebral/patología , Hipocampo/patología , Trastorno Obsesivo Compulsivo/patología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
11.
Br J Psychiatry ; 208(1): 34-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26338992

RESUMEN

BACKGROUND: Early-life adversity is a risk for obsessive-compulsive disorder (OCD), but the impact at the neural level is less clear. AIMS: To investigate the association between brain volumes and early-life adversity in individuals with a diagnosis of OCD only. METHOD: The Childhood Trauma Questionnaire (CTQ-28) was used to assess early-life adversity in 21 participants with OCD and 25 matched healthy controls. The relationship between global and regional brain volume and early-life adversity was measured using voxel-based morphometry (VBM). All data were corrected for multiple comparisons using family-wise error (FWE) at P<0.05. RESULTS: In the OCD group, correlations with total CTQ scores were positively associated with a larger right orbitofrontal cortex volume. Physical neglect was higher in the OCD group than in controls and was positively associated with larger right cerebellum volume in the OCD group only. CONCLUSIONS: Larger brain volumes may reflect underlying developmental neuropathology in adults with OCD who also have experience of childhood trauma.


Asunto(s)
Adultos Sobrevivientes de Eventos Adversos Infantiles/psicología , Mapeo Encefálico/métodos , Encéfalo/patología , Trastorno Obsesivo Compulsivo/diagnóstico , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Escalas de Valoración Psiquiátrica , Análisis de Regresión , Sudáfrica , Encuestas y Cuestionarios , Adulto Joven
12.
Alcohol Clin Exp Res ; 40(1): 113-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26727529

RESUMEN

BACKGROUND: Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. METHODS: Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. RESULTS: Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. CONCLUSIONS: Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Encéfalo/fisiopatología , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Tronco Encefálico/fisiopatología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Lateralidad Funcional/fisiología , Neuroimagen Funcional , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Análisis Multivariante , Neostriado/fisiopatología , Vías Nerviosas , Embarazo , Tálamo/fisiopatología
13.
Metab Brain Dis ; 31(1): 81-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26616173

RESUMEN

Neuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions. However, the temporal specificity of such changes and their behavioral consequences are less known. Here we explore the brain structure of infants with in utero exposure to alcohol shortly after birth. T2 structural MRI images were acquired from 28 alcohol-exposed infants and 45 demographically matched healthy controls at 2-4 weeks of age on a 3T Siemens Allegra system as part of large birth cohort study, the Drakenstein Child Health Study (DCHS). Neonatal neurobehavior was assessed at this visit; early developmental outcome assessed on the Bayley Scales of Infant Development III at 6 months of age. Volumes of gray matter regions were estimated based on the segmentations of the University of North Carolina neonatal atlas. Significantly decreased total gray matter volume was demonstrated for the alcohol-exposed cohort compared to healthy control infants (p < 0.001). Subcortical gray matter regions that were significantly different between groups after correcting for overall gray matter volume included left hippocampus, bilateral amygdala and left thalamus (p < 0.01). These findings persisted even when correcting for infant age, gender, ethnicity and maternal smoking status. Both early neurobehavioral and developmental adverse outcomes at 6 months across multiple domains were significantly associated with regional volumes primarily in the temporal and frontal lobes in infants with prenatal alcohol exposure. Alcohol exposure during the prenatal period has potentially enduring neurobiological consequences for exposed children. These findings suggest the effects of prenatal alcohol exposure on brain growth is present very early in the first year of life, a period during which the most rapid growth and maturation occurs.


Asunto(s)
Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Feto/efectos de los fármacos , Sustancia Gris/efectos de los fármacos , Sustancia Gris/patología , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Desarrollo Infantil/efectos de los fármacos , Estudios de Cohortes , Femenino , Sustancia Gris/crecimiento & desarrollo , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Fumar/efectos adversos , Factores Socioeconómicos , Sudáfrica
14.
Acta Neuropsychiatr ; 27(4): 197-205, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26022619

RESUMEN

BACKGROUND: Neuroimaging studies have indicated that prenatal alcohol exposure is associated with alterations in the structure of specific brain regions in children. However, the temporal and regional specificity of such changes and their behavioural consequences are less known. Here we explore the integrity of regional white matter microstructure in infants with in utero exposure to alcohol, shortly after birth. METHODS: Twenty-eight alcohol-exposed and 28 healthy unexposed infants were imaged using diffusion tensor imaging sequences to evaluate white matter integrity using validated tract-based spatial statistics analysis methods. Second, diffusion values were extracted for group comparisons by regions of interest. Differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity were compared between groups and associations with measures from the Dubowitz neonatal neurobehavioural assessment were examined. RESULTS: Lower AD values (p<0.05) were observed in alcohol-exposed infants in the right superior longitudinal fasciculus compared with non-exposed infants. Altered FA and MD values in alcohol-exposed neonates in the right inferior cerebellar were associated with abnormal neonatal neurobehaviour. CONCLUSION: These exploratory data suggest that prenatal alcohol exposure is associated with reduced white matter microstructural integrity even early in the neonatal period. The association with clinical measures reinforces the likely clinical significance of this finding. The location of the findings is remarkably consistent with previously reported studies of white matter structural deficits in older children with a diagnosis of foetal alcohol spectrum disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Etanol/envenenamiento , Trastornos del Espectro Alcohólico Fetal/patología , Efectos Tardíos de la Exposición Prenatal , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Cerebelo/patología , Preescolar , Estudios de Cohortes , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Intercambio Materno-Fetal , Embarazo
16.
Metab Brain Dis ; 29(2): 341-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24553878

RESUMEN

The global use of methamphetamine (MA) has increased substantially in recent years, but the effect of MA on brain structure in prenatally exposed children is understudied. Here we aimed to investigate potential changes in brain volumes and cortical thickness of children with prenatal MA-exposure compared to unexposed controls. Eighteen 6-year old children with MA-exposure during pregnancy and 18 healthy controls matched for age, gender and socio-economic background underwent structural imaging. Brain volumes and cortical thickness were assessed using Freesurfer and compared using ANOVA. Left putamen volume was significantly increased, and reduced cortical thickness was observed in the left hemisphere of the inferior parietal, parsopercularis and precuneus areas of MA-exposed children compared to controls. Compared to control males, prenatal MA-exposed males had greater volumes in striatal and associated areas, whereas MA-exposed females predominantly had greater cortical thickness compared to control females. In utero exposure to MA results in changes in the striatum of the developing child. In addition, changes within the striatal, frontal, and parietal areas are in part gender dependent.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Metanfetamina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Encéfalo/crecimiento & desarrollo , Niño , Femenino , Humanos , Masculino , Embarazo
17.
Metab Brain Dis ; 29(2): 245-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24370774

RESUMEN

Prenatal methamphetamine exposure (PME) is a significant problem in several parts of the world and poses important health risks for the developing fetus. Research on the short- and long-term outcomes of PME is scarce, however. Here, we summarize present knowledge on the cognitive and behavioral outcomes of PME, based on a review of the neuroimaging, neuropsychology, and neuroscience literature published in the past 15 years. Several studies have reported that the behavioral and cognitive sequelae of PME include broad deficits in the domains of attention, memory, and visual-motor integration. Knowledge regarding brain-behavior relationships is poor, however, in large part because imaging studies are rare. Hence, the effects of PME on developing neurocircuitry and brain architecture remain speculative, and are largely deductive. Some studies have implicated the dopamine-rich fronto-striatal pathways; however, cognitive deficits (e.g., impaired visual-motor integration) that should be associated with damage to those pathways are not manifested consistently across studies. We conclude by discussing challenges endemic to research on prenatal drug exposure, and argue that they may account for some of the inconsistencies in the extant research on PME. Studies confirming predicted brain-behavior relationships in PME, and exploring possible mechanisms underlying those relationships, are needed if neuroscience is to address the urgency of this growing public health problem.


Asunto(s)
Trastornos Relacionados con Anfetaminas/diagnóstico , Trastornos del Conocimiento/diagnóstico , Metanfetamina/efectos adversos , Neuroimagen , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Trastornos del Conocimiento/metabolismo , Femenino , Humanos , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neuroimagen/métodos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
18.
Res Sq ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38746172

RESUMEN

Background: The study aim was to determine whether associations of antenatal maternal anaemia with smaller corpus callosum, putamen, and caudate nucleus volumes previously described in children at age 2-3 years persist to age 6-7 years in the Drakenstein Child Health Study (DCHS). Methods: This neuroimaging sub-study was nested within the DCHS, a South African population-based birth cohort. Pregnant women were enrolled (2012-2015) and mother-child dyads were followed prospectively. A sub-group of children had magnetic resonance imaging at 6-7 years of age (2018-2022). Mothers had haemoglobin measurements during pregnancy and a proportion of children were tested postnatally. Maternal anaemia (haemoglobin<11g/dL) and child anaemia were classified using WHO and local guidelines. Linear modeling was used to investigate associations between antenatal maternal anaemia status, maternal haemoglobin concentrations, and regional child brain volumes. Models included potential confounders and were conducted with and without child anaemia to assess the relative roles of antenatal versus postnatal anaemia. Results: Overall, 157 children (Mean [SD] age of 75.54 [4.77] months; 84 [53.50%] male) were born to mothers with antenatal haemoglobin data. The prevalence of maternal anaemia during pregnancy was 31.85% (50/157). In adjusted models, maternal anaemia status was associated with smaller volumes of the total corpus callosum (adjusted percentage difference, -6.77%; p=0.003), left caudate nucleus (adjusted percentage difference, -5.98%, p=0.005), and right caudate nucleus (adjusted percentage difference, -6.12%; p=0.003). Continuous maternal haemoglobin was positively associated with total corpus callosum (ß=0.239 [CI: 0.10 to 0.38]; p<0.001) and caudate nucleus (ß=0.165 [CI: 0.02 to 0.31]; p=0.027) volumes. In a sub-group (n=89) with child haemoglobin data (Mean [SD] age of 76.06[4.84]), the prevalence of antenatal maternal anaemia and postnatal child anaemia was 38.20% (34/89) and 47.19% (42/89), respectively. There was no association between maternal and child anaemia (c2 = 0.799; p=0.372), and child anaemia did not contribute to regional brain volume differences associated with maternal anaemia. Conclusions: Associations between maternal anaemia and regional child brain volumes previously reported at 2-3 years of age were consistent and persisted to 6-7 years of age. Findings support the importance of optimizing antenatal maternal health and reinforce these brain regions as a future research focus on intervention outcomes.

19.
Nat Neurosci ; 27(1): 176-186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996530

RESUMEN

The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.


Asunto(s)
Nacimiento Prematuro , Masculino , Femenino , Humanos , Recién Nacido , Preescolar , Niño , Cognición , Encéfalo/diagnóstico por imagen , Neuroimagen , Imagen por Resonancia Magnética
20.
Brain Imaging Behav ; 17(4): 395-402, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37059898

RESUMEN

Neuroimaging studies suggest involvement of frontal, striatal, limbic and cerebellar regions in trichotillomania, an obsessive-compulsive related disorder. However, findings regarding the underlying neural circuitry remains limited and inconsistent. Graph theoretical analysis offers a way to identify structural brain networks in trichotillomania. T1-weighted MRI scans were acquired in adult females with trichotillomania (n = 23) and healthy controls (n = 16). Graph theoretical analysis was used to investigate structural networks as derived from cortical thickness and volumetric FreeSurfer output. Hubs, brain regions with highest connectivity in the global network, were identified, and group differences were determined. Regions with highest connectivity on a regional level were also determined. There were no differences in small-worldness or other network measures between groups. Hubs in the global network of trichotillomania patients included temporal, parietal, and occipital regions (at 2SD above mean network connectivity), as well as frontal and striatal regions (at 1SD above mean network connectivity). In contrast, in healthy controls hubs at 2SD represented different frontal, parietal and temporal regions, while at 1SD hubs were widespread. The inferior temporal gyrus, involved in object recognition as part of the ventral visual pathway, had significantly higher connectivity on a global and regional level in trichotillomania. The study included women only and sample size was limited. This study adds to the trichotillomania literature on structural brain network connectivity. Our study findings are consistent with previous studies that have implicated somatosensory, sensorimotor and frontal-striatal circuitry in trichotillomania, and partially overlap with structural connectivity findings in obsessive-compulsive disorder.


Asunto(s)
Trastorno Obsesivo Compulsivo , Tricotilomanía , Adulto , Humanos , Femenino , Tricotilomanía/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Cabello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA