Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Biol ; 25(1): 488-98, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15601868

RESUMEN

The Ccr4-Not complex is a conserved global regulator of gene expression, which serves as a regulatory platform that senses and/or transmits nutrient and stress signals to various downstream effectors. Presumed effectors of this complex in yeast are TFIID, a general transcription factor that associates with the core promoter, and Msn2, a key transcription factor that regulates expression of stress-responsive element (STRE)-controlled genes. Here we show that the constitutively high level of STRE-driven expression in ccr4-not mutants results from two independent effects. Accordingly, loss of Ccr4-Not function causes a dramatic Msn2-independent redistribution of TFIID on promoters with a particular bias for STRE-controlled over ribosomal protein gene promoters. In parallel, loss of Ccr4-Not complex function results in an alteration of the posttranslational modification status of Msn2, which depends on the type 1 protein phosphatase Glc7 and its newly identified subunit Bud14. Tests of epistasis as well as transcriptional analyses of Bud14-dependent transcription support a model in which the Ccr4-Not complex prevents activation of Msn2 via inhibition of the Bud14/Glc7 module in exponentially growing cells. Thus, increased activity of STRE genes in ccr4-not mutants may result from both altered general distribution of TFIID and unscheduled activation of Msn2.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Ribonucleasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional , Reactivos de Enlaces Cruzados/farmacología , ADN/metabolismo , Regulación de la Expresión Génica , Genotipo , Glucosa/metabolismo , Immunoblotting , Inmunoprecipitación , Modelos Biológicos , Mutación , Hibridación de Ácido Nucleico , Fosfoproteínas Fosfatasas/metabolismo , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteína Fosfatasa 1 , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factor de Transcripción TFIID/química , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
2.
FEBS Lett ; 579(9): 1973-7, 2005 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-15792805

RESUMEN

The antifungal plant defensin DmAMP1 interacts with the fungal sphingolipid mannosyl diinositolphosphoryl ceramide (M(IP)(2)C) and induces fungal growth inhibition. We have identified SKN1, besides the M(IP)(2)C-biosynthesis gene IPT1, as a novel DmAMP1-sensitivity gene in Saccharomyces cerevisiae. SKN1 was previously shown to be a KRE6 homologue, which is involved in beta-1,6-glucan biosynthesis. We demonstrate that a Deltaskn1 mutant lacks M(IP)(2)C. Interestingly, overexpression of either IPT1 or SKN1 complemented the skn1 mutation, conferred sensitivity to DmAMP1, and resulted in M(IP)(2)C levels comparable to the wild type. These results show that SKN1, together with IPT1, is involved in sphingolipid biosynthesis in S. cerevisiae.


Asunto(s)
Antifúngicos/farmacología , Defensinas/farmacología , Glicoesfingolípidos/biosíntesis , Proteínas de la Membrana/fisiología , Proteínas de Plantas/farmacología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica , Genes de Plantas , Prueba de Complementación Genética , Glicoesfingolípidos/genética , Proteínas de la Membrana/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia/genética
3.
Cell Cycle ; 3(4): 462-8, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15300954

RESUMEN

The highly conserved PKA and TOR proteins define key signaling pathways that control cell proliferation in response to growth factors and/or nutrients. In yeast, inactivation of PKA and/or TOR causes cells to arrest growth early G1 and induces a program that is characteristic of G0 cells. We have recently shown that the protein kinase Rim15 integrates both PKA- and TOR-mediated signals. In this work, we demonstrate that the Rim15-activated genomic expression program following glucose limitation at the diauxic shift is mediated by the three transcription factors Gis1, Msn2, and Msn4. The Rim15 regulon comprises several gene clusters implicated in the adaptation to respiratory growth, including classical oxidative stress genes such as SOD1 and SOD2, suggesting that the reduced life span of rim15delta cells may be due to their deficiency in oxidative damage prevention. Interestingly, we found that the primary amino acid sequence of Rim15 includes in its amino-terminal part a conserved PAS domain, known to act as a sensor for a variety of stimuli, We propose that Rim15 has evolved to integrate nutrient signals (transduced via TOR and PKA) and redox and/or oxidative stress signals to appropriately induce a transcriptional program that ensures survival in G0.


Asunto(s)
Antioxidantes/farmacología , Proteínas Quinasas/fisiología , Fase de Descanso del Ciclo Celular , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Northern Blotting , Supervivencia Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Fase G1 , Regulación de la Expresión Génica , Glucosa/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
4.
Cell Div ; 1: 3, 2006 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-16759348

RESUMEN

In recent years, the general understanding of nutrient sensing and signalling, as well as the knowledge about responses triggered by altered nutrient availability have greatly advanced. While initial studies were directed to top-down elucidation of single nutrient-induced pathways, recent investigations place the individual signalling pathways into signalling networks and pursue the identification of converging effector branches that orchestrate the dynamical responses to nutritional cues. In this review, we focus on Rim15, a protein kinase required in yeast for the proper entry into stationary phase (G0). Recent studies revealed that the activity of Rim15 is regulated by the interplay of at least four intercepting nutrient-responsive pathways.

5.
Mol Microbiol ; 55(3): 862-80, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15661010

RESUMEN

In the yeast Saccharomyces cerevisiae, PKA and Sch9 exert similar physiological roles in response to nutrient availability. However, their functional redundancy complicates to distinguish properly the target genes for both kinases. In this article, we analysed different phenotypic read-outs. The data unequivocally showed that both kinases act through separate signalling cascades. In addition, genome-wide expression analysis under conditions and with strains in which either PKA and/or Sch9 signalling was specifically affected, demonstrated that both kinases synergistically or oppositely regulate given gene targets. Unlike PKA, which negatively regulates stress-responsive element (STRE)- and post-diauxic shift (PDS)-driven gene expression, Sch9 appears to exert additional positive control on the Rim15-effector Gis1 to regulate PDS-driven gene expression. The data presented are consistent with a cyclic AMP (cAMP)-gating phenomenon recognized in higher eukaryotes consisting of a main gatekeeper, the protein kinase PKA, switching on or off the activities and signals transmitted through primary pathways such as, in case of yeast, the Sch9-controlled signalling route. This mechanism allows fine-tuning various nutritional responses in yeast cells, allowing them to adapt metabolism and growth appropriately.


Asunto(s)
Adaptación Fisiológica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Medios de Cultivo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Perfilación de la Expresión Génica , Genoma Fúngico , Glucosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Trehalasa/metabolismo
6.
Mol Cell ; 12(6): 1607-13, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14690612

RESUMEN

The highly conserved Tor kinases (TOR) and the protein kinase A (PKA) pathway regulate cell proliferation in response to growth factors and/or nutrients. In Saccharomyces cerevisiae, loss of either TOR or PKA causes cells to arrest growth early in G(1) and to enter G(0) by mechanisms that are poorly understood. Here we demonstrate that the protein kinase Rim15 is required for entry into G(0) following inactivation of TOR and/or PKA. Induction of Rim15-dependent G(0) traits requires two discrete processes, i.e., nuclear accumulation of Rim15, which is negatively regulated both by a Sit4-independent TOR effector branch and the protein kinase B (PKB/Akt) homolog Sch9, and release from PKA-mediated inhibition of its protein kinase activity. Thus, Rim15 integrates signals from at least three nutrient-sensory kinases (TOR, PKA, and Sch9) to properly control entry into G(0), a key developmental process in eukaryotic cells.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Quinasas/metabolismo , Fase de Descanso del Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Animales , Antifúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2 , Saccharomyces cerevisiae/fisiología , Sirolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA