Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917126

RESUMEN

Hirschsprung (HSCR) Associated Enterocolitis (HAEC) is a common life-threatening complication in HSCR. HAEC is suggested to be due to a loss of gut homeostasis caused by impairment of immune system, barrier defense, and microbiome, likely related to genetic causes. No gene has been claimed to contribute to HAEC occurrence, yet. Genetic investigation of HAEC by Whole-Exome Sequencing (WES) on 24 HSCR patients affected (HAEC) or not affected (HSCR-only) by enterocolitis and replication of results on a larger panel of patients allowed the identification of the HAEC susceptibility variant p.H187Q in the Oncostatin-M receptor (OSMR) gene (14.6% in HAEC and 5.1% in HSCR-only, p = 0.0024). Proteomic analysis on the lymphoblastoid cell lines from one HAEC patient homozygote for this variant and one HAEC patient not carrying the variant revealed two well distinct clusters of proteins significantly up or downregulated upon OSM stimulation. A marked enrichment in immune response pathways (q < 0.0001) was shown in the HAEC H187 cell line, while proteins upregulated in the HAEC Q187 lymphoblasts sustained pathways likely involved in pathogen infection and inflammation. In conclusion, OSMR p.H187Q is an HAEC susceptibility variant and perturbates the downstream signaling cascade necessary for the gut immune response and homeostasis maintenance.


Asunto(s)
Susceptibilidad a Enfermedades , Enterocolitis/etiología , Enterocolitis/metabolismo , Enfermedad de Hirschsprung/complicaciones , Enfermedad de Hirschsprung/genética , Subunidad beta del Receptor de Oncostatina M/genética , Transducción de Señal , Alelos , Enterocolitis/patología , Expresión Génica , Frecuencia de los Genes , Variación Genética , Genotipo , Enfermedad de Hirschsprung/diagnóstico , Humanos , Modelos Moleculares , Subunidad beta del Receptor de Oncostatina M/química , Subunidad beta del Receptor de Oncostatina M/metabolismo , Conformación Proteica , Proteómica/métodos , Relación Estructura-Actividad , Secuenciación del Exoma , Secuenciación Completa del Genoma
2.
Genes (Basel) ; 13(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35885962

RESUMEN

The TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid sensing through the cGAS-STING pathway, and dominant Aicardi-Goutières Syndrome type 1 (AGS1) represents one of numerous TREX1-related autoimmune diseases. Monoallelic TREX1 mutations were identified in patients showing early-onset cerebrovascular disease, ascribable to small vessel disease, and CADASIL-like neuroimaging. We report the clinical-neuroradiological features of two patients with AGS-like (Patient A) and CADASIL-like (Patient B) phenotypes carrying the heterozygous p.A136V and p.R174G TREX1 variants, respectively. Genetic findings, obtained by a customized panel including 183 genes associated with monogenic stroke, were combined with interferon signature testing and biochemical assays to determine the mutations' effects in vitro. Our results for the p.A136V variant are inconsistent with prior biochemistry-pathology correlates for dominant AGS-causing TREX1 mutants. The p.R174G variant modestly altered exonuclease activity in a manner consistent with perturbation of substrate interaction rather than catalysis, which represents the first robust enzymological data for a TREX1 variant identified in a CADASIL-like patient. In conclusion, functional analysis allowed us to interpret the impact of TREX1 variants on patients' phenotypes. While the p.A136V variant is unlikely to be causative for AGS in Patient A, Patient B's phenotype is potentially related to the p.R174G variant. Therefore, further functional investigations of TREX1 variants found in CADASIL-like patients are warranted to determine any causal link and interrogate the molecular disease mechanism(s).


Asunto(s)
CADASIL , Enfermedades Autoinmunes del Sistema Nervioso , Dominio Catalítico , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Estudios de Asociación Genética , Humanos , Mutación Missense , Malformaciones del Sistema Nervioso , Fosfoproteínas
3.
Vaccines (Basel) ; 9(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835261

RESUMEN

Systemic sclerosis (scleroderma, SSc) is an autoimmune connective tissue disease characterized by excessive production of collagen and multiorgan involvement. Scleroderma patients are at increased risk of influenza complications and pneumonia; thus, vaccinations are recommended. This systematic review evaluated the influenza and pneumococcus vaccination coverage for SSc patients. We included all studies from Pubmed reporting on influenza and pneumococcal vaccination rate in Scleroderma patients up to May 2021. The 14 studies thus selected identified a suboptimal vaccination rate in autoimmune and SSc patients, ranging from 28 to 59% for the flu vaccine, and from 11 to 58% for the pneumo vaccine in absence of specific vaccination campaigns, variously considering also other variables such as age, gender, vaccination settings, and possible vaccination campaigns. We also considered the reasons for low coverage and the approaches that might increase the vaccination rates. A lack of knowledge about the importance of vaccination in these patients and their doctors underlined the need to increase the awareness for vaccination in this patients' category. Current guidelines recommend vaccination in elderly people and people affected by particular conditions that widely overlap with SSc, yet autoimmune diseases are not always clearly mentioned. Improving this suboptimal vaccination rate with clear guidelines is crucial for SSc patients and for clinicians to immunize these categories based principally on the pathology, prior to the age. Recommendations by the immunologist and the direct link to the vaccine providers can highly improve the vaccine coverage.

4.
Front Pharmacol ; 12: 723218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950024

RESUMEN

Alexander's disease (AxD) is a rare, usually relentlessly progressive disorder of astroglial cells in the central nervous system related to mutations in the gene encoding the type III intermediate filament protein, glial fibrillary acidic protein (GFAP). The pathophysiology of AxD is only partially understood. Available data indicate that an excessive GFAP gene expression may play a role. In particular, a "threshold hypothesis" has been reported, suggesting that mutant GFAP representing about 20% of the total cellular GFAP should be sufficient to cause disease. Thus, strategies based on reducing cellular mutant GFAP protein levels and/or activating biological processes involved in the correct protein folding could be effective in counteracting the toxic effect of misfolded GFAP. Considering that clomipramine (CLM), which has been selected by a wide small molecules screening as the greatest inhibitory potential drug against GFAP expression, is contraindicated because of its proconvulsant activity in the infantile form of AxD, which is also characterized by the occurrence of epileptic seizures, two powerful antiepileptic agents, carbamazepine (CBZ) and phenytoin (PHT), which share specific stereochemical features in common with CLM, were taken into consideration in a reliable in vitro model of AxD. In the present work, we document for the first time that CBZ and PHT have a definite inhibitory effect on pathological GFAP cellular expression and folding. Moreover, we confirm previous results of a similar beneficial effect of CLM. In addition, we have demonstrated that CBZ and CLM play a refolding effect on mutant GFAP proteins, likely ascribed at the induction of CRYAB expression, resulting in the decrease of mutant GFAP aggregates formation. As CBZ and PHT are currently approved for use in humans, their documented effects on pathological GFAP cellular expression and folding may indicate a potential therapeutic role as disease-modifying agents of these drugs in the clinical management of AxD, particularly in AxD patients with focal epilepsy with and without secondary generalization.

5.
Genes (Basel) ; 11(12)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322348

RESUMEN

Alexander disease (AxD) is a rare astrogliopathy caused by heterozygous mutations, either inherited or arising de novo, on the glial fibrillary acid protein (GFAP) gene (17q21). Mutations in the GFAP gene make the protein prone to forming aggregates which, together with heat-shock protein 27 (HSP27), αB-crystallin, ubiquitin, and proteasome, contribute to form Rosenthal fibers causing a toxic effect on the cell. Unfortunately, no pharmacological treatment is available yet, except for symptom reduction therapies, and patients undergo a progressive worsening of the disease. The aim of this study was the production of a zebrafish model for AxD, to have a system suitable for drug screening more complex than cell cultures. To this aim, embryos expressing the human GFAP gene carrying the most severe p.R239C under the control of the zebrafish gfap gene promoter underwent functional validation to assess several features already observed in in vitro and other in vivo models of AxD, such as the localization of mutant GFAP inclusions, the ultrastructural analysis of cells expressing mutant GFAP, the effects of treatments with ceftriaxone, and the heat shock response. Our results confirm that zebrafish is a suitable model both to study the molecular pathogenesis of GFAP mutations and to perform pharmacological screenings, likely useful for the search of therapies for AxD.


Asunto(s)
Enfermedad de Alexander , Animales Modificados Genéticamente , Ceftriaxona/farmacología , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía , Mutación , Pez Cebra , Enfermedad de Alexander/tratamiento farmacológico , Enfermedad de Alexander/genética , Enfermedad de Alexander/metabolismo , Enfermedad de Alexander/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Evaluación Preclínica de Medicamentos , Expresión Génica , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA