Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 758, 2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34688274

RESUMEN

BACKGROUND: Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS: Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS: For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.


Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Tipificación de Bacteriófagos , Simulación por Computador , Brotes de Enfermedades , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/epidemiología , Humanos , Tipificación de Secuencias Multilocus , Vancomicina , Enterococos Resistentes a la Vancomicina/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-33199388

RESUMEN

Inactivating tolC in multidrug-resistant Escherichia coli with differing sequence types and quinolone resistance-determining mutations reveals remarkably potentiated activity of the first-in-class topoisomerase inhibitors gepotidacin and zoliflodacin. Differences between both structurally unrelated compounds in comparison to fluoroquinolones regarding the selectivity of E. coli RND (resistance-nodulation-cell division)-type transporters, efflux inhibitors, and AcrB porter domain mutations were demonstrated. The findings should reinforce efforts to develop efflux-bypassing drugs and provide AcrB targets with critical relevance for this purpose.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Acenaftenos , Antibacterianos/farmacología , Barbitúricos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacología , Compuestos Heterocíclicos con 3 Anillos , Isoxazoles , Morfolinas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Oxazolidinonas , Compuestos de Espiro , Inhibidores de Topoisomerasa
3.
Artículo en Inglés | MEDLINE | ID: mdl-33468485

RESUMEN

Gram-negative bacteria partly rely on efflux pumps to facilitate growth under stressful conditions and to increase resistance to a wide variety of commonly used drugs. In recent years, Escherichia coli sequence type 131 (ST131) has emerged as a major cause of extraintestinal infection frequently exhibiting a multidrug resistance (MDR) phenotype. The contribution of efflux to MDR in emerging E. coli MDR clones, however, is not well studied. We characterized strains from an international collection of clinical MDR E. coli isolates by MIC testing with and without the addition of the AcrAB-TolC efflux inhibitor 1-(1-naphthylmethyl)-piperazine (NMP). MIC data for 6 antimicrobial agents and their reversion by NMP were analyzed by principal-component analysis (PCA). PCA revealed a group of 17 MDR E. coli isolates (n = 34) exhibiting increased susceptibility to treatment with NMP, suggesting an enhanced contribution of efflux pumps to antimicrobial resistance in these strains (termed enhanced efflux phenotype [EEP] strains). Only 1/17 EEP strains versus 12/17 non-EEP MDR strains belonged to the ST131 clonal group. Whole-genome sequencing revealed marked differences in efflux-related genes between EEP and control strains, with the majority of notable amino acid substitutions occurring in AcrR, MarR, and SoxR. Quantitative reverse transcription-PCR (qRT-PCR) of multiple efflux-related genes showed significant overexpression of the AcrAB-TolC system in EEP strains, whereas in the remaining strains, we found enhanced expression of alternative efflux proteins. We conclude that a proportion of MDR E. coli strains exhibit an EEP, which is linked to an overexpression of the AcrAB-TolC efflux pump and a distinct array of genomic variations. Members of ST131, although highly successful, are less likely to exhibit the EEP.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana
4.
Artículo en Inglés | MEDLINE | ID: mdl-33820769

RESUMEN

Limited information is available on whether blaKPC-containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated blaKPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. Epidemiologically related isolates were subjected to short- and long-read whole-genome sequencing. A hybrid assembly was performed, and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from GenBank. Pairwise comparisons of epidemiologically related and unrelated plasmids based on SNPs using snippy and of phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser index) were performed. The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. The ranges of number of SNPs, Roary phylogenetic distance, and Stoesser index overlapped between the epidemiologically related and unrelated plasmids. When a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related was used, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser index). Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids.


Asunto(s)
Enterobacteriaceae , beta-Lactamasas , Proteínas Bacterianas/genética , Enterobacteriaceae/genética , Klebsiella pneumoniae/genética , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
5.
J Antimicrob Chemother ; 76(1): 70-76, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009805

RESUMEN

OBJECTIVES: Numerous studies show increased prevalence of MDR bacteria amongst asylum seekers, but data on the molecular profiles of such strains are limited. We aimed to evaluate the molecular profiles of ESBL-producing Escherichia coli (ESBL-E. coli) strains isolated from asylum seekers and investigate their phylogenetic relatedness. METHODS: WGS data of ESBL-E. coli isolates from asylum seekers, retrieved from 1 January to 31 December 2016, were analysed to assess MLST STs, fim types, phylogroups and resistance genes. Fifty-two ESBL-E. coli isolates from the Dutch-German border region were used for genome comparison purposes as a control group. RESULTS: Among 112 ESBL-E. coli isolates from asylum seekers, originating mostly from Syria (n = 40) and Iraq (n = 15), the majority belonged to ST131 (21.4%) and ST10 (17.0%). The predominant gene for ß-lactam resistance was blaCTX-M-15 (67.9%), followed by the often co-detected blaTEM-1B (39.3%). No mcr or carbapenemase genes were detected. The majority of the strains belonged to phylogroups B2 (38.4%) and A (32.1%), carrying fimH27 (25%) and fimH30 (19.6%). A core genome MLST minimum spanning tree did not reveal clusters containing strains from the asylum seekers and the control group. Five clusters were formed within the asylum seeker group, by strains isolated from people originating from different countries. CONCLUSIONS: The most frequently isolated clones in this study were isolated on a regular basis within the Dutch population before the increase in the asylum seeker population. No mcr- or carbapenemase-producing clones were detected among the asylum seeker population. Minor clustering was observed amongst the asylum seeker strains.


Asunto(s)
Infecciones por Escherichia coli , Refugiados , Antibacterianos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Humanos , Tipificación de Secuencias Multilocus , Países Bajos/epidemiología , Filogenia , beta-Lactamasas/genética
6.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576083

RESUMEN

Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.


Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/metabolismo , Animales , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Humanos , Factores de Virulencia/genética
7.
BMC Genomics ; 21(1): 138, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041522

RESUMEN

BACKGROUND: We investigated the association of symptoms and disease severity of shigellosis patients with genetic determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome wide association studies (GWAS) were performed using presence or absence of single genes, combinations of genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of binary/dichotomous representation of symptoms and their calculated severity scores were also available from this study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and Escherichia were used as control. RESULTS: The isolates obtained were representative of the population structure encountered in other Western European countries. No association was found between single genes or combinations of genes and separate symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and > 3,000,000 k-mers, indicating adequate performance of the algorithms used. CONCLUSIONS: To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for development, prioritization and optimization of guidelines for control measures of shigellosis or infections with EIEC.


Asunto(s)
Disentería Bacilar/diagnóstico , Disentería Bacilar/microbiología , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Shigella/genética , Estudios Transversales , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Filogenia , Shigella/clasificación , Shigella/aislamiento & purificación
8.
Thorax ; 75(4): 338-344, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31996401

RESUMEN

Culture-independent microbial sequencing techniques have revealed that the respiratory tract harbours a complex microbiome not detectable by conventional culturing methods. The contribution of the microbiome to chronic obstructive pulmonary disease (COPD) pathobiology and the potential for microbiome-based clinical biomarkers in COPD are still in the early phases of investigation. Sputum is an easily obtainable sample and has provided a wealth of information on COPD pathobiology, and thus has been a preferred sample type for microbiome studies. Although the sputum microbiome likely reflects the respiratory microbiome only in part, there is increasing evidence that microbial community structure and diversity are associated with disease severity and clinical outcomes, both in stable COPD and during the exacerbations. Current evidence has been limited to mainly cross-sectional studies using 16S rRNA gene sequencing, attempting to answer the question 'who is there?' Longitudinal studies using standardised protocols are needed to answer outstanding questions including differences between sputum sampling techniques. Further, with advancing technologies, microbiome studies are shifting beyond the examination of the 16S rRNA gene, to include whole metagenome and metatranscriptome sequencing, as well as metabolome characterisation. Despite being technically more challenging, whole-genome profiling and metabolomics can address the questions 'what can they do?' and 'what are they doing?' This review provides an overview of the basic principles of high-throughput microbiome sequencing techniques, current literature on sputum microbiome profiling in COPD, and a discussion of the associated limitations and future perspectives.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , ARN Ribosómico 16S/genética , Esputo/microbiología , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Sensibilidad y Especificidad , Análisis de Secuencia de ARN
9.
Int J Med Microbiol ; 310(8): 151453, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33045580

RESUMEN

Extraintestinal pathogenic E. coli (ExPEC) is the most frequent etiological agent of urinary tract infections (UTIs). Particular evolutionary successful lineages are associated with severe UTIs and higher incidences of multidrug resistance. Most of the resistance genes are acquired by horizontal transfer of plasmids and other mobile genetic elements (MGEs), and this process has been associated with the successful dissemination of particular lineages. Here, we identified the presence of MGEs and their role in virulence and resistance profiles of isolates obtained from the urine of hospitalized patients in Brazil. Isolates belonging to the successful evolutionary lineages of sequence type (ST) 131, ST405, and ST648 were found to be multidrug-resistant, while those belonging to ST69 and ST73 were often not. Among the ST131, ST405, and ST648 isolates with a resistant phenotype, a high number of mainly IncFII plasmids was identified. The plasmids contained resistance cassettes, and these were also found within phage-related sequences and the chromosome of the isolates. The resistance cassettes were found to harbor several resistance genes, including blaCTX-M-15. In addition, in ST131 isolates, diverse pathogenicity islands similar to those found in highly virulent ST73 isolates were detected. Also, a new genomic island associated with several virulence genes was identified in ST69 and ST131 isolates. In addition, several other MGEs present in the ST131 reference strain EC958 were identified in our isolates, most of them exclusively in ST131 isolates. In contrast, genomic islands present in this reference strain were only partially present or completely absent in our ST131 isolates. Of all isolates studied, ST73 and ST131 isolates had the most similar virulence profile. Overall, no clear association was found between the presence of specific MGEs and virulence profiles. Furthermore, the interplay between virulence and resistance by acquiring MGEs seemed to be lineage dependent. Although the acquisition of IncF plasmids, specific PAIs, GIs, and other MGEs seemed to be involved in the success of some lineages, it cannot explain the success of different lineages, also indicating other (host) factors are involved in this process. Nevertheless, the detection, identification, and surveillance of lineage-specific MGEs may be useful to monitor (new) emerging clones.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/patogenicidad , Brasil , Infecciones por Escherichia coli/orina , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Humanos , Virulencia/genética , beta-Lactamasas/genética
10.
Int J Syst Evol Microbiol ; 70(5): 2998-3003, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32375941

RESUMEN

Nine independent Gram-negative bacterial strains were isolated from rectal swabs or stool samples of immunocompromised patients from two different wards of a university hospital. All isolates were phylogenetically analysed based on their 16S rRNA gene sequence, housekeeping gene recN, multilocus sequence analysis of concatenated partial fusA, leuS, pyrG and rpoB sequences, and by whole genome sequencing data. The analysed strains of the new species cluster together and form a separate branch with Citrobacter werkmanii NBRC105721T as the most closely related species. An average nucleotide identity value of 95.9-96% and computation of digital DNA-DNA hybridization values separate the new species from all other type strains of the genus Citrobacter. Biochemical characteristics further delimit the isolates from closely related Citrobacter type strains. As a result of the described data, a new Citrobacter species is introduced, for which the name Citrobacter cronae sp. nov. is proposed. The type strain is Tue2-1T with a G+C DNA content of 52.2 mol%.


Asunto(s)
Citrobacter/clasificación , Heces/microbiología , Filogenia , Recto/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Citrobacter/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Alemania , Humanos , Huésped Inmunocomprometido , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
BMC Genomics ; 20(1): 271, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953471

RESUMEN

BACKGROUND: Wild birds, in particular pigeons are considered a natural reservoir for stx2f-carrying E. coli. An extensive comparison of isolates from pigeons and humans from the same region is lacking, which hampers justifiable conclusions on the epidemiology of these pathogens. Over two hundred human and pigeon stx2f-carrying E. coli isolates predominantly from the Netherlands were analysed by whole genome sequencing and comparative genomic analysis including in silico MLST, serotyping, virulence genes typing and whole genome MLST (wgMLST). RESULTS: Serotypes and sequence types of stx2f-carrying E. coli showed a strong non-random distribution among the human and pigeon isolates with O63:H6/ST583, O113:H6/ST121 and O125:H6/ST583 overrepresented among the human isolates and not found among pigeons. Pigeon isolates were characterized by an overrepresentation of O4:H2/ST20 and O45:H2/ST20. Nearly all isolates harboured the locus of enterocyte effacement (LEE) but different eae and tir subtypes were non-randomly distributed among human and pigeon isolates. Phylogenetic core genome comparison demonstrated that the pigeon isolates and clinical isolates largely occurred in separated clusters. In addition, serotypes/STs exclusively found among humans generally were characterized by high level of clonality, smaller genome sizes and lack of several non-LEE-encoded virulence genes. A bundle-forming pilus operon, including bfpA, indicative for typical enteropathogenic E. coli (tEPEC) was demonstrated in 72.0% of the stx2f-carrying serotypes but with distinct operon types between the main pigeon and human isolate clusters. CONCLUSIONS: Comparative genomics revealed that isolates from mild human disease are dominated by serotypes not encountered in the pigeon reservoir. It is therefore unlikely that zoonotic transmission from this reservoir plays an important role in the contribution to the majority of human disease associated with stx2f-producing E. coli in the Netherlands. Unexpectedly, this study identified the common occurrence of STEC2f/tEPEC hybrid pathotype in various serotypes and STs. Further research should focus on the possible role of human-to-human transmission of Stx2f-producing E. coli.


Asunto(s)
Enfermedades de las Aves/epidemiología , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/metabolismo , Genómica/métodos , Toxina Shiga/metabolismo , Factores de Virulencia/metabolismo , Animales , Columbidae , Escherichia coli Enteropatógena/clasificación , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Filogenia , Toxina Shiga/genética , Factores de Virulencia/genética
12.
J Clin Microbiol ; 57(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30728192

RESUMEN

Serratia marcescens is an opportunistic bacterial pathogen. It is notorious for its increasing antimicrobial resistance and its potential to cause outbreaks of colonization and infections, predominantly in neonatal intensive care units (NICUs). There, its spread requires rapid infection control response. To understand its spread, detailed molecular typing is key. We present a whole-genome multilocus sequence typing (wgMLST) method for S. marcescens Using a set of 299 publicly available whole-genome sequences (WGS), we developed an initial wgMLST system consisting of 9,377 gene loci. This included 1,455 loci occurring in all reference genomes and 7,922 accessory loci. This closed system was validated using three geographically diverse collections of S. marcescens consisting of 111 clinical isolates implicated in nosocomial dissemination events in three hospitals. The validation procedure showed a full match between epidemiological data and the wgMLST analyses. We set the cutoff value for epidemiological (non)relatedness at 20 different alleles, though for the majority of outbreak-clustered isolates, this difference was limited to 4 alleles. This shows that the wgMLST system for S. marcescens provides prospects for successful future monitoring for the epidemiological containment of this opportunistic pathogen.


Asunto(s)
Genoma Bacteriano , Tipificación de Secuencias Multilocus/métodos , Infecciones por Serratia/epidemiología , Serratia marcescens/clasificación , Secuenciación Completa del Genoma , Adolescente , Adulto , Alelos , ADN Bacteriano/genética , Brotes de Enfermedades , Femenino , Sitios Genéticos , Alemania/epidemiología , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Unidades de Cuidado Intensivo Pediátrico , Masculino , Pruebas de Sensibilidad Microbiana , Países Bajos/epidemiología , Infecciones por Serratia/microbiología
13.
BMC Infect Dis ; 19(1): 1037, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31818261

RESUMEN

BACKGROUND: Shigella spp. and entero-invasive E. coli (EIEC) use the same invasive mechanism to cause diarrheal diseases. Public health regulations apply only to Shigella spp. infections, but are hampered by the lack of simple methods to distinguish them from EIEC. In the last decades, molecular methods for detecting Shigella spp. and EIEC were implemented in medical microbiological laboratories (MMLs). However, shigellosis cases identified with molecular techniques alone are not notifiable in most countries. Our study investigates the impact of EIEC versus Shigella spp. infections and molecular diagnosed shigellosis versus culture confirmed shigellosis for re-examination of the rationale for the current public health regulations. METHODS: In this multicenter cross-sectional study, fecal samples of patients suspected for gastro-enteritis, referred to 15 MMLs in the Netherlands, were screened by PCR for Shigella spp. or EIEC. Samples were cultured to discriminate between the two pathogens. We compared risk factors, symptoms, severity of disease, secondary infections and socio-economic consequences for (i) culture-confirmed Shigella spp. versus culture-confirmed EIEC cases (ii) culture positive versus PCR positive only shigellosis cases. RESULTS: In 2016-2017, 777 PCR positive fecal samples with patient data were included, 254 of these were culture-confirmed shigellosis cases and 32 were culture-confirmed EIEC cases. EIEC cases were more likely to report ingestion of contaminated food and were less likely to be men who have sex with men (MSM). Both pathogens were shown to cause serious disease although differences in specific symptoms were observed. Culture-negative but PCR positive cases were more likely report travel or ingestion of contaminated food and were less likely to be MSM than culture-positive cases. Culture-negative cases were more likely to suffer from multiple symptoms. No differences in degree of secondary infections were observed between Shigella spp. and EIEC, and culture-negative and culture-positive cases. CONCLUSIONS: No convincing evidence was found to support the current guidelines that employs different measures based on species or detection method. Therefore, culture and molecular detection methods for Shigella spp. and EIEC should be considered equivalent for case definition and public health regulations regarding shigellosis. Differences were found regarding risks factors, indicating that different prevention strategies may be required.


Asunto(s)
Disentería Bacilar/epidemiología , Disentería Bacilar/microbiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Adolescente , Adulto , Técnicas Bacteriológicas/métodos , Estudios Transversales , Diarrea/microbiología , Disentería Bacilar/etiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/etiología , Heces/microbiología , Femenino , Gastroenteritis/microbiología , Homosexualidad Masculina/estadística & datos numéricos , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Reacción en Cadena de la Polimerasa , Salud Pública , Shigella/genética , Shigella/aislamiento & purificación , Shigella/patogenicidad , Adulto Joven
14.
Molecules ; 24(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699887

RESUMEN

Phe-Arg-ß-naphthylamide (PAßN) has been characterized as an efflux pump inhibitor (EPI) acting on the major multidrug resistance efflux transporters of Gram-negative bacteria, such as AcrB in Eschericha coli. In the present study, in vitro random mutagenesis was used to evolve resistance to the sensitizing activity of PAßN with the aim of elucidating its mechanism of action. A strain was obtained that was phenotypically similar to a previously reported mutant from a serial selection approach that had no efflux-associated mutations. We could confirm that acrB mutations in the new mutant were unrelated to PAßN resistance. The next-generation sequencing of the two mutants revealed loss-of-function mutations in lpxM. An engineered lpxM knockout strain showed up to 16-fold decreased PAßN activity with large lipophilic drugs, while its efflux capacity, as well as the efficacy of other EPIs, remained unchanged. LpxM is responsible for the last acylation step in lipopolysaccharide (LPS) synthesis, and lpxM deficiency has been shown to result in penta-acylated instead of hexa-acylated lipid A. Modeling the two lipid A types revealed steric conformational changes due to underacylation. The findings provide evidence of a target site of PAßN in the LPS layer, and prove membrane activity contributing to its drug-sensitizing potency.


Asunto(s)
Arginina/análogos & derivados , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arginina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutagénesis/efectos de los fármacos , Mutación/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-29311088

RESUMEN

OXA-427 is a new class D carbapenemase encountered in different species of Enterobacteriaceae in a Belgian hospital. To study the dispersal of this gene, we performed a comparative analysis of two plasmids containing the blaOXA-427 gene, isolated from a Klebsiella pneumoniae strain and an Enterobacter cloacae complex strain. The two IncA/C2 plasmids containing blaOXA-427 share the same backbone; in the K. pneumoniae strain, however, this plasmid is cointegrated into an IncFIb plasmid, forming a 321-kb megaplasmid with multiple multiresistance regions.


Asunto(s)
Proteínas Bacterianas/genética , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana
16.
Artículo en Inglés | MEDLINE | ID: mdl-29311068

RESUMEN

Genomic comparison of the first six Dutch vanD-type vancomycin-resistant Enterococcus faecium (VRE) isolates with four vanD gene clusters from other enterococcal species and anaerobic gut commensals revealed that the vanD gene cluster was located on a genomic island of variable size. Phylogenetic inferences revealed that the Dutch VRE isolates were genetically not closely related and that genetic variation of the vanD-containing genomic island was not species specific, suggesting that this island is transferred horizontally between enterococci and anaerobic gut commensals.


Asunto(s)
Enterococcus faecium/efectos de los fármacos , Islas Genómicas/genética , Resistencia a la Vancomicina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecium/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes/genética , Filogenia , Vancomicina/farmacología
17.
J Clin Microbiol ; 56(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30135233

RESUMEN

Klebsiella pneumoniae and related species are frequent causes of nosocomial infections and outbreaks. Therefore, quick and reliable strain typing is crucial for the detection of transmission routes in the hospital. The aim of this study was to evaluate Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as rapid methods for typing clinical Klebsiella isolates in comparison to whole-genome sequencing (WGS), which was considered the gold standard for typing and identification. Here, 68 clinical Klebsiella strains were analyzed by WGS, FTIR, and MALDI-TOF MS. FTIR showed high discriminatory power in comparison to the WGS reference, whereas MALDI-TOF MS exhibited a low ability to type the isolates. MALDI-TOF mass spectra were further analyzed for peaks that showed high specificity for different Klebsiella species. Phylogenetic analysis revealed that the Klebsiella isolates comprised three different species: K. pneumoniae, K. variicola, and K. quasipneumoniae Genome analysis showed that MALDI-TOF MS can be used to distinguish K. pneumoniae from K. variicola due to shifts of certain mass peaks. The peaks were tentatively identified as three ribosomal proteins (S15p, L28p, L31p) and one stress response protein (YjbJ), which exhibit amino acid differences between the two species. Overall, FTIR has high discriminatory power to recognize the clonal relationship of isolates, thus representing a valuable tool for rapid outbreak analysis and for the detection of transmission events due to fast turnaround times and low costs per sample. Furthermore, specific amino acid substitutions allow the discrimination of K. pneumoniae and K. variicola by MALDI-TOF MS.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Infecciones por Klebsiella/microbiología , Klebsiella/clasificación , Klebsiella/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier , Técnicas de Tipificación Bacteriana/normas , Análisis por Conglomerados , Costos y Análisis de Costo , Genoma Bacteriano/genética , Humanos , Klebsiella/química , Klebsiella/genética , Infecciones por Klebsiella/diagnóstico , Polimorfismo de Nucleótido Simple/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Factores de Tiempo
18.
J Clin Microbiol ; 56(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30021824

RESUMEN

Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli (EIEC) is challenging because of their close relatedness. Distinction is vital, as infections with Shigella spp. are under surveillance of health authorities, in contrast to EIEC infections. In this study, a culture-dependent identification algorithm and a molecular identification algorithm were evaluated. Discrepancies between the two algorithms and original identification were assessed using whole-genome sequencing (WGS). After discrepancy analysis with the molecular algorithm, 100% of the evaluated isolates were identified in concordance with the original identification. However, the resolution for certain serotypes was lower than that of previously described methods and lower than that of the culture-dependent algorithm. Although the resolution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shigella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of Shigella flexneri isolates were identified in concordance with the original identification. Discrepancy analysis using WGS was able to confirm one of the used algorithms in four discrepant results. However, it failed to clarify three other discrepant results, as it added yet another identification. Both proposed algorithms performed well for the identification of Shigella spp. and EIEC isolates and are applicable in low-resource settings, in contrast to previously described methods that require WGS for daily diagnostics. Evaluation of the algorithms showed that both algorithms are capable of identifying Shigella species and EIEC isolates. The molecular algorithm is more applicable in clinical diagnostics for fast and accurate screening, while the culture-dependent algorithm is more suitable for reference laboratories to identify Shigella spp. and EIEC up to the serotype level.


Asunto(s)
Algoritmos , Disentería Bacilar/diagnóstico , Infecciones por Escherichia coli/diagnóstico , Escherichia coli/aislamiento & purificación , Técnicas de Diagnóstico Molecular/normas , Shigella/aislamiento & purificación , Técnicas Bacteriológicas , Diagnóstico Diferencial , Disentería Bacilar/microbiología , Escherichia coli Enterotoxigénica/clasificación , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/aislamiento & purificación , Escherichia coli/clasificación , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Genes Bacterianos/genética , Humanos , Filogenia , Serogrupo , Shigella/clasificación , Shigella/genética , Secuenciación Completa del Genoma/normas
19.
J Antimicrob Chemother ; 73(1): 66-76, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29088362

RESUMEN

OBJECTIVES: To investigate the population structure, drug resistance mechanisms and plasmids of community-associated Enterobacter cloacae complex (CA-ECC) isolates in China. METHODS: Sixty-two CA-ECC isolates collected from 31 hospitals across China were typed by hsp60 typing and MLST. ESBL and AmpC-overexpression phenotype was determined by double-disc synergy test. Replicon typing and conjugation were performed for plasmid analysis. All ESBL-positive isolates and representative conjugants were subjected to detailed characterization by WGS. RESULTS: Enterobacter hormaechei and Enterobacter kobei were predominant in our collections. MLST distinguished 46 STs with a polyclonal structure. ST591 was the most prevalent clone detected in northern China. Twenty-two isolates (35.5%) were ESBL positive and half of them were E. kobei. ESBL positivity was related to ESBL production (15/22) and to AmpC overexpression (18/22). Core-genome phylogenetic analysis identified intra- and inter-regional dissemination of ESBL-producing E. kobei clones. ESBL producers were exclusively classified as E. hormaechei and E. kobei, and blaCTX-M-3 was the most prevalent ESBL genotype (10/15) detected in four different environments. In the ESBL-positive population, the ESBL producers encoded more drug resistance genes (8-24 genes) by carrying more plasmids (1-3 plasmids) than the non-ESBL-producing isolates, resulting in an inter-group difference in drug susceptibilities. IncHI-type plasmids were prevalent in the ESBL producers (12/15). All IncHI2-type plasmids (n = 11) carried ESBL genes and shared a similar backbone to p09-036813-1A_261 recovered from Salmonella enterica in Canada. CONCLUSIONS: The species-specific distribution, species-dependent ESBL mechanism and endemic plasmids identified in our study highlight the necessity for tailored surveillance of CA-ECC in the future.


Asunto(s)
Proteínas Bacterianas/genética , Chaperonina 60/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Infecciones por Enterobacteriaceae/epidemiología , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , China/epidemiología , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus
20.
Int J Syst Evol Microbiol ; 68(5): 1787-1794, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29624164

RESUMEN

During a study to assess the faecal microbiome of common seals (Phoca vitulina) in a Dutch seal rehabilitation centre, 16S rRNA gene sequences of an unknown Campylobacter taxon were identified. Campylobacter isolates, which differed from the established Campylobacter taxa, were cultured and their taxonomic position was determined by a polyphasic study based on ten isolates. The isolates were characterized by 16S rRNA and atpA gene sequence analyses and by conventional phenotypic testing. Based on the whole genome sequences, the average nucleotide identity and core genome phylogeny were determined. The isolates formed a separate phylogenetic clade, divergent from all other Campylobacter taxa and most closely related to Campylobacter corcagiensis, Campylobacter geochelonis and Campylobacter ureolyticus. The isolates can be distinguished phenotypically from all other Campylobacter taxa based on their lack of motility, growth at 25 °C and growth on MacConkey agar. This study shows that these isolates represent a novel species within the genus Campylobacter, for which the name Campylobacter blaseri sp. nov. is proposed. The type strain for this novel species is 17S00004-5T (=LMG 30333T=CCUG 71276T).


Asunto(s)
Campylobacter/clasificación , Phoca/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Campylobacter/genética , Campylobacter/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Genes Bacterianos , Países Bajos , Fenotipo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA