Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768994

RESUMEN

Oral squamous cell carcinoma (OSCC) is a rapidly progressive cancer that often develops resistance against DNA damage inducers, such as radiotherapy and chemotherapy, which are still the standard of care regimens for this tumor. Thus, the identification of biomarkers capable of monitoring the clinical progression of OSCC and its responsiveness to therapy is strongly required. To meet this need, here we have employed Whole Genome Sequencing and RNA-seq data from a cohort of 316 patients retrieved from the TCGA Pan-Cancer Atlas to analyze the genomic and transcriptomic status of the DNA damage response (DDR) genes in OSCC. Then, we correlated the transcriptomic data with the clinical parameters of each patient. Finally, we relied on transcriptomic and drug sensitivity data from the CTRP v2 portal, performing Pearson's correlation analysis to identify putative vulnerabilities of OSCC cell lines correlated with DDR gene expression. Our results indicate that several DDR genes show a high frequency of genomic and transcriptomic alterations and that the expression of some of them correlates with OSCC grading and infection by the human papilloma virus. In addition, we have identified a signature of eight DDR genes (namely CCNB1, CCNB2, CDK2, CDK4, CHECK1, E2F1, FANCD2, and PRKDC) that could be predictive for OSCC response to the novel antitumor compounds sorafenib and tipifarnib-P1. Altogether, our data demonstrate that alterations in DDR genes could have an impact on the biology of OSCC. Moreover, here we propose a DDR gene signature whose expression could be predictive of OSCC responsiveness to therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Daño del ADN
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216114

RESUMEN

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways: a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding activity into the nucleus by networking with different gene expression regulators. For this reason, FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK targeting could be effective, either alone or in combination, with other already available treatments. Here, we propose an overview of the novel insights about FAK's structure and nuclear functions, with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally, we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.


Asunto(s)
Núcleo Celular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias/metabolismo , Animales , Regulación de la Expresión Génica/genética , Humanos , Transducción de Señal/fisiología
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362070

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity.


Asunto(s)
Factores de Transcripción Paired Box , Rabdomiosarcoma , Adolescente , Humanos , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/radioterapia , Proteínas de Fusión Oncogénica/metabolismo
4.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34639012

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.


Asunto(s)
Benzamidas/farmacología , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Piridinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Fármacos Sensibilizantes a Radiaciones/farmacología , Rabdomiosarcoma/genética , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/radioterapia
5.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182556

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of children and adolescents. The fusion-positive (FP)-RMS variant expressing chimeric oncoproteins such as PAX3-FOXO1 and PAX7-FOXO1 is at high risk. The fusion negative subgroup, FN-RMS, has a good prognosis when non-metastatic. Despite a multimodal therapeutic approach, FP-RMS and metastatic FN-RMS often show a dismal prognosis with 5-year survival of less than 30%. Therefore, novel targets need to be discovered to develop therapies that halt tumor progression, reducing long-term side effects in young patients. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates focal contacts at the cellular edges. It plays a role in cell motility, survival, and proliferation in response to integrin and growth factor receptors' activation. FAK is often dysregulated in cancer, being upregulated and/or overactivated in several adult and pediatric tumor types. In RMS, both in vitro and preclinical studies point to a role of FAK in tumor cell motility/invasion and proliferation, which is inhibited by FAK inhibitors. In this review, we summarize the data on FAK expression and modulation in RMS. Moreover, we give an overview of the approaches to inhibit FAK in both preclinical and clinical cancer settings.


Asunto(s)
Quinasa 1 de Adhesión Focal/fisiología , Rabdomiosarcoma/fisiopatología , Neoplasias de los Tejidos Blandos/fisiopatología , Animales , Carcinogénesis , Niño , Ensayos Clínicos como Asunto , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Desarrollo de Músculos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Rabdomiosarcoma/genética , Rabdomiosarcoma/terapia , Transducción de Señal , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/terapia
6.
Pediatr Blood Cancer ; 66(10): e27869, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31222885

RESUMEN

Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Rabdomiosarcoma , Niño , Humanos , Proyectos de Investigación
7.
BMC Cancer ; 18(1): 31, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304781

RESUMEN

BACKGROUND: The Intratumoral Microvessel Density (IMVD) is commonly used to quantify tumoral vascularization and is usually assessed by pan-endothelial markers, such as CD31. Endoglin (CD105) is a protein predominantly expressed in proliferating endothelium and the IMVD determined by this marker measures specifically the neovascularization. In this study, we investigated the CD105 expression in pediatric rhabdomyosarcoma and assessed the neovascularization by using the angiogenic ratio IMVD-CD105 to IMVD-CD31. METHODS: Paraffin-embedded archival tumor specimens were selected from 65 pediatric patients affected by rhabdomyosarcoma. The expression levels of CD105, CD31 and Vascular Endothelial Growth Factor (VEGF) were investigated in 30 cases (18 embryonal and 12 alveolar) available for this study. The IMVD-CD105 to IMVD-CD31 expression ratio was correlated with clinical and pathologic features of these patients. RESULTS: We found a specific expression of endoglin (CD105) in endothelial cells of all the rhabdomyosarcoma specimens analyzed. We observed a significant positive correlation between the IMVD individually measured by CD105 and CD31. The CD105/CD31 expression ratio was significantly higher in patients with lower survival and embryonal histology. Indeed, patients with a CD105/CD31 expression ratio < 1.3 had a significantly increased OS (88%, 95%CI, 60%-97%) compared to patients with higher values (40%, 95%CI, 12%-67%). We did not find any statistical correlation among VEGF and EFS, OS and CD105/CD31 expression ratio. CONCLUSION: CD105 is expressed on endothelial cells of rhabdomyosarcoma and represent a useful tool to quantify neovascularization in this tumor. If confirmed by further studies, these results will indicate that CD105 is a potential target for combined therapies in rhabdomyosarcoma.


Asunto(s)
Endoglina/genética , Neovascularización Patológica/genética , Rabdomiosarcoma/genética , Adolescente , Biomarcadores de Tumor/genética , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Neovascularización Patológica/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Rabdomiosarcoma/patología , Factor A de Crecimiento Endotelial Vascular/genética
8.
BMC Cancer ; 14: 139, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24575771

RESUMEN

BACKGROUND: Embryonal Rhabdomyosarcoma (RMS) is a pediatric soft-tissue sarcoma derived from myogenic precursors that is characterized by a good prognosis in patients with localized disease. Conversely, metastatic tumors often relapse, leading to a dismal outcome. The histone methyltransferase EZH2 epigenetically suppresses skeletal muscle differentiation by repressing the transcription of myogenic genes. Moreover, de-regulated EZH2 expression has been extensively implied in human cancers. We have previously shown that EZH2 is aberrantly over-expressed in RMS primary tumors and cell lines. Moreover, it has been recently reported that EZH2 silencing in RD cells, a recurrence-derived embryonal RMS cell line, favors myofiber-like structures formation in a pro-differentiation context. Here we evaluate whether similar effects can be obtained also in the presence of growth factor-supplemented medium (GM), that mimics a pro-proliferative microenvironment, and by pharmacological targeting of EZH2 in RD cells and in RD tumor xenografts. METHODS: Embryonal RMS RD cells were cultured in GM and silenced for EZH2 or treated with either the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep) that induces EZH2 degradation, or with a new class of catalytic EZH2 inhibitors, MC1948 and MC1945, which block the catalytic activity of EZH2. RD cell proliferation and myogenic differentiation were evaluated both in vitro and in vivo. RESULTS: Here we show that EZH2 protein was abnormally expressed in 19 out of 19 (100%) embryonal RMS primary tumors and cell lines compared to their normal counterparts. Genetic down-regulation of EZH2 by silencing in GM condition reduced RD cell proliferation up-regulating p21Cip1. It also resulted in myogenic-like differentiation testified by the up-regulation of myogenic markers Myogenin, MCK and MHC. These effects were reverted by enforced over-expression of a murine Ezh2, highlighting an EZH2-specific effect. Pharmacological inhibition of EZH2 using either DZNep or MC inhibitors phenocopied the genetic knockdown of EZH2 preventing cell proliferation and restoring myogenic differentiation both in vitro and in vivo. CONCLUSIONS: These results provide evidence that EZH2 function can be counteracted by pharmacological inhibition in embryonal RMS blocking proliferation even in a pro-proliferative context. They also suggest that this approach could be exploited as a differentiation therapy in adjuvant therapeutic intervention for embryonal RMS.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Rabdomiosarcoma Embrionario/metabolismo , Adolescente , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Niño , Preescolar , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Metástasis de la Neoplasia , Estadificación de Neoplasias , Complejo Represivo Polycomb 2/metabolismo , Rabdomiosarcoma Embrionario/patología , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Invest Dermatol ; 144(7): 1522-1533.e10, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38237731

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-ß1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-ß1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Epidermólisis Ampollosa Distrófica , Fibroblastos , Fibrosis , Proteína Jagged-1 , Transducción de Señal , Humanos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Epidermólisis Ampollosa Distrófica/tratamiento farmacológico , Epidermólisis Ampollosa Distrófica/patología , Epidermólisis Ampollosa Distrófica/genética , Transducción de Señal/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Regulación hacia Abajo/efectos de los fármacos , Receptor Notch1/metabolismo , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Dipéptidos/farmacología , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Células Cultivadas , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Femenino , Diaminas , Tetrahidronaftalenos , Tiazoles , Valina/análogos & derivados
10.
Int J Mol Sci ; 14(12): 24154-68, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24351808

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent, chronic liver diseases, worldwide. It is a multifactorial disease caused by complex interactions between genetic, epigenetic and environmental factors. Recently, several microRNAs, some of which epigenetically regulated, have been found to be up- and/or down-regulated during NAFLD development. However, in NAFLD, the essential role of the Polycomb Group protein Enhancer of Zeste Homolog 2 (EZH2), which controls the epigenetic silencing of specific genes and/or microRNAs by trimethylating Lys27 on histone H3, still remains unknown. In this study, we demonstrate that the nuclear expression/activity of the EZH2 protein is down-regulated both in livers from NAFLD rats and in the free fatty acid-treated HepG2. The drop in EZH2 is inversely correlated with: (i) lipid accumulation; (ii) the expression of pro-inflammatory markers including TNF-α and TGF-ß; and (iii) the expression of miR-200b and miR-155. Consistently, the pharmacological inhibition of EZH2 by 3-Deazaneplanocin A (DZNep) significantly reduces EZH2 expression/activity, while it increases lipid accumulation, inflammatory molecules and microRNAs. In conclusion, the results of this study suggest that the defective activity of EZH2 can enhance the NAFLD development by favouring steatosis and the de-repression of the inflammatory genes and that of specific microRNAs.


Asunto(s)
Regulación hacia Abajo , Hígado Graso/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Hígado Graso/metabolismo , Hígado Graso/patología , Células Hep G2 , Histonas/metabolismo , Humanos , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Complejo Represivo Polycomb 2/deficiencia , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
11.
Cell Oncol (Dordr) ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095764

RESUMEN

BACKGROUND: Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION: Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.

12.
Cancers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37345159

RESUMEN

Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.

13.
Front Cell Dev Biol ; 11: 1061570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755974

RESUMEN

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma that includes fusion-positive (FP) and fusion-negative (FN) molecular subtypes. FP-RMS expresses PAX3-FOXO1 fusion protein and often shows dismal prognosis. FN-RMS shows cytogenetic abnormalities and frequently harbors RAS pathway mutations. Despite the multimodal heavy chemo and radiation therapeutic regimens, high risk metastatic/recurrent FN-RMS shows a 5-year survival less than 30% due to poor sensitivity to chemo-radiotherapy. Therefore, the identification of novel targets is needed. Polyamines (PAs) such as putrescine (PUT), spermidine (SPD) and spermine (SPM) are low-molecular-mass highly charged molecules whose intracellular levels are strictly modulated by specific enzymes. Among the latter, spermine oxidase (SMOX) regulates polyamine catabolism oxidizing SPM to SPD, which impacts cellular processes such as apoptosis and DNA damage response. Here we report that low SMOX levels are associated with a worse outcome in FN-RMS, but not in FP-RMS, patients. Consistently, SMOX expression is downregulated in FN-RMS cell lines as compared to normal myoblasts. Moreover, SMOX transcript levels are reduced FN-RMS cells differentiation, being indirectly downregulated by the muscle transcription factor MYOD. Noteworthy, forced expression of SMOX in two cell lines derived from high-risk FN-RMS: 1) reduces SPM and upregulates SPD levels; 2) induces G0/G1 cell cycle arrest followed by apoptosis; 3) impairs anchorage-independent and tumor spheroids growth; 4) inhibits cell migration; 5) increases γH2AX levels and foci formation indicative of DNA damage. In addition, forced expression of SMOX and irradiation synergize at activating ATM and DNA-PKCs, and at inducing γH2AX expression and foci formation, which suggests an enhancement in DNA damage response. Irradiated SMOX-overexpressing FN-RMS cells also show significant decrease in both colony formation capacity and spheroids growth with respect to single approaches. Thus, our results unveil a role for SMOX as inhibitor of tumorigenicity of FN-RMS cells in vitro. In conclusion, our in vitro results suggest that SMOX induction could be a potential combinatorial approach to sensitize FN-RMS to ionizing radiation and deserve further in-depth studies.

14.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102140

RESUMEN

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Asunto(s)
Rabdomiosarcoma , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Factores de Transcripción , Transformación Celular Neoplásica , Diferenciación Celular
15.
BMC Med ; 10: 141, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23158439

RESUMEN

Pediatric soft tissue sarcomas are rare tumors of childhood, frequently characterized by specific chromosome translocations. Despite improvements in treatment, their clinical management is often challenging due to the low responsiveness of metastatic forms and aggressive variants to conventional therapeutic approaches, which leads to poor overall survival. It is widely thought that soft tissue sarcomas derive from mesenchymal progenitor cells that, during embryonic life, have developed chromosomal aberrations with de-regulation of the main pathways governing tissue morphogenesis. The Notch signaling pathway is one of the most important molecular networks involved in differentiation processes. Emerging evidence highlights the role of Notch signaling de-regulation in the biology of these pediatric sarcomas. In this review, we present an outline of recently gathered evidence on the role of Notch signaling in soft tissue sarcomas, highlighting its importance in tumor cell biology. The potential challenges and opportunities of targeting Notch signaling in the treatment of pediatric soft tissue sarcomas are also discussed.


Asunto(s)
Receptores Notch/metabolismo , Sarcoma/patología , Transducción de Señal , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven
16.
Int J Mol Sci ; 13(12): 16554-79, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23443118

RESUMEN

Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.


Asunto(s)
Epigénesis Genética , MicroARNs/biosíntesis , Neuroblastoma/metabolismo , ARN Neoplásico/biosíntesis , Rabdomiosarcoma/metabolismo , Investigación Biomédica Traslacional , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , MicroARNs/genética , Neuroblastoma/genética , Neuroblastoma/patología , ARN Neoplásico/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología
17.
J Exp Clin Cancer Res ; 41(1): 107, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331312

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Epigénesis Genética , Humanos , Neoplasias Hepáticas/patología , Pronóstico
18.
Front Oncol ; 12: 1016894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248991

RESUMEN

Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.

19.
Oncol Rep ; 48(6)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36321792

RESUMEN

Novel therapeutic strategies are needed for paediatric patients affected by Acute Myeloid Leukaemia (AML), particularly for those at high-risk for relapse. MicroRNAs (miRs) have been extensively studied as biomarkers in cancer and haematological disorders, and their expression has been correlated to the presence of recurrent molecular abnormalities, expression of oncogenes, as well as to prognosis/clinical outcome. In the present study, expression signatures of different miRs related both to presence of myeloid/lymphoid or mixed-lineage leukaemia 1 and Fms like tyrosine kinase 3 internal tandem duplications rearrangements and to the clinical outcome of paediatric patients with AML were identified. Notably, miR-221-3p and miR-222-3p resulted as a possible relapse-risk related miR. Thus, miR-221-3p and miR-222-3p expression modulation was investigated by using a Bromodomain­containing protein 4 (BRD4) inhibitor (JQ1) and a natural compound that acts as histone acetyl transferase inhibitor (curcumin), alone or in association, in order to decrease acetylation of histone tails and potentiate the effect of BRD4 inhibition. JQ1 modulates miR-221-3p and miR-222-3p expression in AML with a synergic effect when associated with curcumin. Moreover, changes were observed in the expression of CDKN1B, a known target of miR-221-3p and miR-222-3p, increase in apoptosis and downregulation of miR-221-3p and miR-222-3p expression in CD34+ AML primary cells. Altogether, these findings suggested that several miRs expression signatures at diagnosis may be used for risk stratification and as relapse prediction biomarkers in paediatric AML outlining that epigenetic drugs, could represent a novel therapeutic strategy for high-risk paediatric patients with AML. For these epigenetic drugs, additional research for enhancing activity, bioavailability and safety is needed.


Asunto(s)
Curcumina , Leucemia Mieloide Aguda , MicroARNs , Humanos , Niño , Proteínas Nucleares/metabolismo , Curcumina/farmacología , Histonas , Factores de Transcripción/metabolismo , Recurrencia Local de Neoplasia , Leucemia Mieloide Aguda/genética , MicroARNs/genética , Apoptosis , Proteínas de Ciclo Celular/metabolismo
20.
Eur J Med Chem ; 237: 114410, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35525212

RESUMEN

LSD1 is a histone lysine demethylase proposed as therapeutic target in cancer. Chemical modifications applied at C2, C4 and/or C7 positions of the quinazoline core of the previously reported dual LSD1/G9a inhibitor 1 led to a series of non-covalent, highly active, and selective LSD1 inhibitors (2-4 and 6-30) and to the dual LSD1/G9a inhibitor 5 that was more potent than 1 against LSD1. In THP-1 and MV4-11 leukemic cells, the most potent compounds (7, 8, and 29) showed antiproliferative effects at sub-micromolar level without significant toxicity at 1 µM in non-cancer AHH-1 cells. In MV4-11 cells, the new derivatives increased the levels of the LSD1 histone mark H3K4me2 and induced the re-expression of the CD86 gene silenced by LSD1, thereby confirming the inhibition of LSD1 at cellular level. In breast MDA-MB-231 as well as in rhabdomyosarcoma RD and RH30 cells, taken as examples of solid tumors, the same compounds displayed cell growth arrest in the same IC50 range, highlighting a crucial anticancer role for LSD1 inhibition and suggesting no added value for the simultaneous G9a inhibition in these tumor cell lines.


Asunto(s)
Inhibidores Enzimáticos , Leucemia , Línea Celular Tumoral , Proliferación Celular , Inhibidores Enzimáticos/química , Histona Demetilasas , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA