Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pathol ; 254(2): 147-158, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33904171

RESUMEN

Artificial intelligence (AI)-based systems applied to histopathology whole-slide images have the potential to improve patient care through mitigation of challenges posed by diagnostic variability, histopathology caseload, and shortage of pathologists. We sought to define the performance of an AI-based automated prostate cancer detection system, Paige Prostate, when applied to independent real-world data. The algorithm was employed to classify slides into two categories: benign (no further review needed) or suspicious (additional histologic and/or immunohistochemical analysis required). We assessed the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs) of a local pathologist, two central pathologists, and Paige Prostate in the diagnosis of 600 transrectal ultrasound-guided prostate needle core biopsy regions ('part-specimens') from 100 consecutive patients, and to ascertain the impact of Paige Prostate on diagnostic accuracy and efficiency. Paige Prostate displayed high sensitivity (0.99; CI 0.96-1.0), NPV (1.0; CI 0.98-1.0), and specificity (0.93; CI 0.90-0.96) at the part-specimen level. At the patient level, Paige Prostate displayed optimal sensitivity (1.0; CI 0.93-1.0) and NPV (1.0; CI 0.91-1.0) at a specificity of 0.78 (CI 0.64-0.89). The 27 part-specimens considered by Paige Prostate as suspicious, whose final diagnosis was benign, were found to comprise atrophy (n = 14), atrophy and apical prostate tissue (n = 1), apical/benign prostate tissue (n = 9), adenosis (n = 2), and post-atrophic hyperplasia (n = 1). Paige Prostate resulted in the identification of four additional patients whose diagnoses were upgraded from benign/suspicious to malignant. Additionally, this AI-based test provided an estimated 65.5% reduction of the diagnostic time for the material analyzed. Given its optimal sensitivity and NPV, Paige Prostate has the potential to be employed for the automated identification of patients whose histologic slides could forgo full histopathologic review. In addition to providing incremental improvements in diagnostic accuracy and efficiency, this AI-based system identified patients whose prostate cancers were not initially diagnosed by three experienced histopathologists. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata/diagnóstico , Anciano , Anciano de 80 o más Años , Biopsia , Biopsia con Aguja Gruesa , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Patólogos , Próstata/patología , Neoplasias de la Próstata/patología
2.
Mod Pathol ; 34(8): 1588-1595, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33782551

RESUMEN

Prostate cancer is a leading cause of morbidity and mortality for adult males in the US. The diagnosis of prostate carcinoma is usually made on prostate core needle biopsies obtained through a transrectal approach. These biopsies may account for a significant portion of the pathologists' workload, yet variability in the experience and expertise, as well as fatigue of the pathologist may adversely affect the reliability of cancer detection. Machine-learning algorithms are increasingly being developed as tools to aid and improve diagnostic accuracy in anatomic pathology. The Paige Prostate AI-based digital diagnostic is one such tool trained on the digital slide archive of New York's Memorial Sloan Kettering Cancer Center (MSKCC) that categorizes a prostate biopsy whole-slide image as either "Suspicious" or "Not Suspicious" for prostatic adenocarcinoma. To evaluate the performance of this program on prostate biopsies secured, processed, and independently diagnosed at an unrelated institution, we used Paige Prostate to review 1876 prostate core biopsy whole-slide images (WSIs) from our practice at Yale Medicine. Paige Prostate categorizations were compared to the pathology diagnosis originally rendered on the glass slides for each core biopsy. Discrepancies between the rendered diagnosis and categorization by Paige Prostate were each manually reviewed by pathologists with specialized genitourinary pathology expertise. Paige Prostate showed a sensitivity of 97.7% and positive predictive value of 97.9%, and a specificity of 99.3% and negative predictive value of 99.2% in identifying core biopsies with cancer in a data set derived from an independent institution. Areas for improvement were identified in Paige Prostate's handling of poor quality scans. Overall, these results demonstrate the feasibility of porting a machine-learning algorithm to an institution remote from its training set, and highlight the potential of such algorithms as a powerful workflow tool for the evaluation of prostate core biopsies in surgical pathology practices.


Asunto(s)
Adenocarcinoma/diagnóstico , Inteligencia Artificial , Interpretación de Imagen Asistida por Computador/métodos , Patología Quirúrgica/métodos , Neoplasias de la Próstata/diagnóstico , Anciano , Anciano de 80 o más Años , Biopsia con Aguja Gruesa , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
3.
Am J Surg Pathol ; 48(7): 846-854, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809272

RESUMEN

The detection of lymph node metastases is essential for breast cancer staging, although it is a tedious and time-consuming task where the sensitivity of pathologists is suboptimal. Artificial intelligence (AI) can help pathologists detect lymph node metastases, which could help alleviate workload issues. We studied how pathologists' performance varied when aided by AI. An AI algorithm was trained using more than 32 000 breast sentinel lymph node whole slide images (WSIs) matched with their corresponding pathology reports from more than 8000 patients. The algorithm highlighted areas suspicious of harboring metastasis. Three pathologists were asked to review a dataset comprising 167 breast sentinel lymph node WSIs, of which 69 harbored cancer metastases of different sizes, enriched for challenging cases. Ninety-eight slides were benign. The pathologists read the dataset twice, both digitally, with and without AI assistance, randomized for slide and reading orders to reduce bias, separated by a 3-week washout period. Their slide-level diagnosis was recorded, and they were timed during their reads. The average reading time per slide was 129 seconds during the unassisted phase versus 58 seconds during the AI-assisted phase, resulting in an overall efficiency gain of 55% ( P <0.001). These efficiency gains are applied to both benign and malignant WSIs. Two of the 3 reading pathologists experienced significant sensitivity improvements, from 74.5% to 93.5% ( P ≤0.006). This study highlights that AI can help pathologists shorten their reading times by more than half and also improve their metastasis detection rate.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Metástasis Linfática , Biopsia del Ganglio Linfático Centinela , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Femenino , Metástasis Linfática/diagnóstico , Metástasis Linfática/patología , Interpretación de Imagen Asistida por Computador , Patólogos , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Variaciones Dependientes del Observador , Ganglio Linfático Centinela/patología , Algoritmos , Flujo de Trabajo
4.
Arch Pathol Lab Med ; 147(10): 1178-1185, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36538386

RESUMEN

CONTEXT.­: Prostate cancer diagnosis rests on accurate assessment of tissue by a pathologist. The application of artificial intelligence (AI) to digitized whole slide images (WSIs) can aid pathologists in cancer diagnosis, but robust, diverse evidence in a simulated clinical setting is lacking. OBJECTIVE.­: To compare the diagnostic accuracy of pathologists reading WSIs of prostatic biopsy specimens with and without AI assistance. DESIGN.­: Eighteen pathologists, 2 of whom were genitourinary subspecialists, evaluated 610 prostate needle core biopsy WSIs prepared at 218 institutions, with the option for deferral. Two evaluations were performed sequentially for each WSI: initially without assistance, and immediately thereafter aided by Paige Prostate (PaPr), a deep learning-based system that provides a WSI-level binary classification of suspicious for cancer or benign and pinpoints the location that has the greatest probability of harboring cancer on suspicious WSIs. Pathologists' changes in sensitivity and specificity between the assisted and unassisted modalities were assessed, together with the impact of PaPr output on the assisted reads. RESULTS.­: Using PaPr, pathologists improved their sensitivity and specificity across all histologic grades and tumor sizes. Accuracy gains on both benign and cancerous WSIs could be attributed to PaPr, which correctly classified 100% of the WSIs showing corrected diagnoses in the PaPr-assisted phase. CONCLUSIONS.­: This study demonstrates the effectiveness and safety of an AI tool for pathologists in simulated diagnostic practice, bridging the gap between computational pathology research and its clinical application, and resulted in the first US Food and Drug Administration authorization of an AI system in pathology.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Biopsia con Aguja
5.
Sci Robot ; 4(37)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137717

RESUMEN

The ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms of explanations best foster human trust in machines and proposes a framework in which explanations are generated from both functional and mechanistic perspectives. The robot system learns from human demonstrations to open medicine bottles using (i) an embodied haptic prediction model to extract knowledge from sensory feedback, (ii) a stochastic grammar model induced to capture the compositional structure of a multistep task, and (iii) an improved Earley parsing algorithm to jointly leverage both the haptic and grammar models. The robot system not only shows the ability to learn from human demonstrators but also succeeds in opening new, unseen bottles. Using different forms of explanations generated by the robot system, we conducted a psychological experiment to examine what forms of explanations best foster human trust in the robot. We found that comprehensive and real-time visualizations of the robot's internal decisions were more effective in promoting human trust than explanations based on summary text descriptions. In addition, forms of explanation that are best suited to foster trust do not necessarily correspond to the model components contributing to the best task performance. This divergence shows a need for the robotics community to integrate model components to enhance both task execution and human trust in machines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA