Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 39(12): 3197-3208, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36271203

RESUMEN

PURPOSE: Precipitation of amorphous solid dispersions has gained traction in the pharmaceutical industry given its application to pharmaceuticals with varying physicochemical properties. Although preparing co-precipitated amorphous dispersions (cPAD) in high-shear rotor-stator devices allows for controlled shear conditions during precipitation, such aggressive mixing environments can result in materials with low bulk density and poor flowability. This work investigated annealing cPAD after precipitation by washing with heated anti-solvent to improve bulk powder properties required for downstream drug product processing. METHODS: Co-precipitation dispersions were prepared by precipitation into pH-modified aqueous anti-solvent. Amorphous dispersions were washed with heated anti-solvent and assessed for bulk density, flowability, and dissolution behavior relative to both cPAD produced without a heated wash and spray dried intermediate. RESULTS: Washing cPAD with a heated anti-solvent resulted in an improvement in flowability and increased bulk density. The mechanism of densification was ascribed to annealing over the wetted Tg of the material, which lead to collapse of the porous co-precipitate structure into densified granules without causing crystallization. In contrast, an alternative approach to increase bulk density by precipitating the ASD using low shear conditions showed evidence of crystallinity. The dissolution rate of the densified cPAD granules was lower than that of the low-bulk density dispersions, although both samples reached concentrations equivalent to that of the spray dried intermediate after 90 min dissolution. CONCLUSIONS: Hot wash densification was a tenable route to produce co-precipitated amorphous dispersions with improved properties for downstream processing compared to non-densified powders.


Asunto(s)
Desecación , Composición de Medicamentos/métodos , Polvos/química , Desecación/métodos , Solubilidad , Solventes
2.
J Pharm Sci ; 112(8): 2037-2045, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36115592

RESUMEN

Amorphous solid dispersions (ASDs) are an attractive option to improve the bioavailability of poorly water-soluble compounds. However, the material attributes of ASDs can present formulation and processability challenges, which are often mitigated by the addition of excipients albeit at the expense of tablet size. In this work, an ASD manufacturing train combining co-precipitation and thin film evaporation (TFE) was used to generate high bulk-density co-precipitated amorphous dispersion (cPAD). The cPAD/TFE material was directly compressed into tablets at amorphous solid dispersion loadings up to 89 wt%, representing a greater than 60% reduction in tablet size relative to formulated tablets containing spray dried intermediate (SDI). This high ASD loading was possible due to densification of the amorphous dispersion during drying by TFE. Pharmacokinetic performance of the TFE-isolated, co-precipitated dispersion was shown to be equivalent to an SDI formulation. These data highlight the downstream advantages of this novel ASD manufacturing pathway to facilitate reduced tablet size via high ASD loading in directly compressed tablets.


Asunto(s)
Agua , Composición de Medicamentos , Solubilidad , Fenómenos Físicos , Comprimidos
3.
J Pharm Sci ; 108(4): 1486-1495, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468831

RESUMEN

We have implemented the use of a small-scale, 7-vial Micro Freeze Dryer (MicroFD®; Millrock Technology, Inc.) that has the capability to accurately control heat transfer during lyophilization. We demonstrate the ability to fine-tune the MicroFD® vial heat transfer coefficient (Kv) to match the Kv of vials in a LyoStar III laboratory-scale unit. When the MicroFD® is run under conditions that match the Kv of the LyoStar III, the resulting lyophilization performance between scales results in equivalent product temperature profiles and critical quality attributes for the same drying process. The proposed workflow demonstrates how exploitation of Kv control in the MicroFD® enables cycle development of at-scale lyophilization processes using only 7 product vials. By changing the MicroFD®Kv, laboratory and, potentially, manufacturing cycles may be simulated using only 7 product vials for tremendous active pharmaceutical ingredient savings, as long as at-scale heat transfer coefficients are well characterized.


Asunto(s)
Composición de Medicamentos/instrumentación , Desecación/instrumentación , Composición de Medicamentos/métodos , Composición de Medicamentos/normas , Liofilización/instrumentación , Liofilización/normas , Control de Calidad , Temperatura , Flujo de Trabajo
4.
J Pharm Sci ; 107(4): 1204-1208, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29233726

RESUMEN

Despite the increasing importance of mini-tablet for its advantages as pediatric formulations and in modified-release applications, its popularity is limited due to the lack of formulation and processing knowledge in developing such dosage forms. In this study, common grades of microcrystalline cellulose and roller compacted granules with a range of powder properties were used to evaluate the critical material properties required for the successful manufacturing of 1.7-mm mini-tablets. It was found that blends with small particle size had poor flow properties that did not support consistent die filling and also tended to cause tooling jam and damage. While the granulation process was effective in improving blend flow properties by increasing particle size, it is imperative to avoid very large particles that could also cause inadequate flow by blocking the space within the die. Successful mini-tablet compression could be achieved by removing particles larger than roughly 1/3 of the die diameter or milling the granules using a screen less than 1/3 of the die diameter.


Asunto(s)
Polvos/química , Comprimidos/química , Celulosa/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Tamaño de la Partícula , Presión
5.
J Pharm Sci ; 107(10): 2592-2600, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29890172

RESUMEN

Development of optimal drug product (DP) lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the DP formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. To overcome these development difficulties, an 8 factor definitive screening design, including both formulation and process parameters, was executed on a fully human monoclonal antibody DP. The definitive screening design enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different DP formulations. This concept is demonstrated on a monoclonal antibody DP where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions.


Asunto(s)
Desarrollo de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Liofilización/métodos , Tecnología Farmacéutica/métodos , Temperatura
6.
J Pharm Sci ; 102(10): 3586-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23934748

RESUMEN

Although the roller compaction process appears simple, efforts to quantitatively model the process have proven challenging because of complex material behavior in the feeding and compaction zones. To date, implementation of roller compaction models to experimental work has been limited because these models typically require large experimental data sets or obscure input parameters that are difficult to obtain experimentally. In this work, an alternative approach has been established, expanding upon a widely used roller compaction model, Johanson's model, to enable its incorporation into a daily workflow. The proposed method requires only standard, routinely measured parameters as inputs. An excellent correlation between simulated and experimental results has been achieved for placebo and active blends up to 22% (w/w) drug load. Furthermore, a dimensionless relationship between key process parameters and final compact properties was elucidated. This dimensionless parameter, referred to as the modified Bingham number (Bm *), highlights the importance of balancing yield and viscous stresses during roller compaction to achieve optimal output properties. By maintaining a constant ratio of yield-to-viscous stresses, as indicated by a constant Bm *, consistent products were attained between two scales of operation. Bm * was shown to provide guidance toward determining the design space for formulation development, as well as to facilitate scale-up development.


Asunto(s)
Composición de Medicamentos/instrumentación , Composición de Medicamentos/métodos , Tecnología Farmacéutica/instrumentación , Tecnología Farmacéutica/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA