Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 33(12): 13546-13559, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545915

RESUMEN

The gastrointestinal microbiota is emerging as a unique and inexhaustible source for metabolites with potential to modulate G-protein coupled receptors (GPCRs). The ghrelin receptor [growth hormone secretagogue receptor (GHSR)-1a] is a GPCR expressed throughout both the gut and the brain and plays a crucial role in maintaining energy balance, metabolism, and the central modulation of food intake, motivation, reward, and mood. To date, few studies have investigated the potential of the gastrointestinal microbiota and its metabolites to modulate GPCR signaling. Here we investigate the ability of short-chain fatty acids (SCFAs), lactate, and different bacterial strains, including Bifidobacterium and Lactobacillus genera, to modulate GHSR-1a signaling. We identify, for what is to our knowledge the first time, a potent effect of microbiota-derived metabolites on GHSR-1a signaling with potential significant consequences for host metabolism and physiology. We show that SCFAs, lactate, and bacterial supernatants are able to attenuate ghrelin-mediated signaling through the GHSR-1a. We suggest a novel route of communication between the gut microbiota and the host via modulation of GHSR-1a receptor signaling. Together, this highlights the emerging therapeutic potential in the exploration of the microbiota metabolome in the specific targeting of key GPCRs, with pleiotropic actions that span both the CNS and periphery.-Torres-Fuentes, C., Golubeva, A. V., Zhdanov, A. V., Wallace, S., Arboleya, S., Papkovsky, D. B., El Aidy, S., Ross, P., Roy, B. L., Stanton, C., Dinan, T. G., Cryan, J. F., Schellekens, H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling.


Asunto(s)
Bacterias/metabolismo , Ácidos Grasos Volátiles/farmacología , Microbioma Gastrointestinal , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Láctico/farmacología , Receptores de Ghrelina/metabolismo , Ghrelina/farmacología , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores de Ghrelina/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Mol Nutr Food Res ; 66(3): e2100665, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34851032

RESUMEN

SCOPE: Increasing scientific evidence is validating the use of dietary strategies to support and improve brain health throughout the lifespan, with tailored nutritional interventions catering for specific life stages. Dietary phospholipid supplementations in early life and adulthood are shown to alleviate some of the behavioral consequences associated with chronic stress. This study aims to explore the protective effects of a tailored phospholipid-enriched buttermilk on behavioral and endocrine responses induced by chronic psychosocial stress in adulthood, and to compare these effects according to the life stage at which the supplementation is started. METHODS AND RESULTS: A novel developed phospholipid-enriched dairy product is assessed for its effects on social, anxiety- and depressive-like behaviors, as well as the stress response and cognitive performance following chronic psychosocial stress in C57BL/6J mice, with supplementation beginning in adulthood or early life. Milk phospholipid supplementation from birth protects adult mice against chronic stress-induced changes in endocrine response to a subsequent acute stressor and reduces innate anxiety-like behavior in non-stressed animals. When starting in adulthood, the dietary intervention reverses the anxiety-like phenotype caused by chronic stress exposure. CONCLUSION: Dairy-derived phospholipids exert differential protective effects against chronic psychosocial stress depending on the targeted life stage and duration of the dietary supplementation.


Asunto(s)
Leche , Estrés Psicológico , Animales , Ansiedad/etiología , Ansiedad/prevención & control , Conducta Animal , Longevidad , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/farmacología
3.
EBioMedicine ; 63: 103176, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33349590

RESUMEN

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Asunto(s)
Bifidobacterium longum/fisiología , Resistencia a la Enfermedad , Interacciones Microbiota-Huesped , Obesidad/metabolismo , Adiposidad , Corticoesteroides/sangre , Animales , Biomarcadores , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Metabolismo Energético , Glucosa/metabolismo , Leptina/sangre , Masculino , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/etiología , Probióticos , Roedores , Investigación Biomédica Traslacional
4.
Neurobiol Stress ; 13: 100252, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344707

RESUMEN

Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.

5.
Neurosci Biobehav Rev ; 111: 183-193, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31945391

RESUMEN

Chronic stress and ageing are two of the most important factors that negatively affect cognitive processes such as learning and memory across the lifespan. To date, pharmacological agents have been insufficient in reducing the impact of both on brain health, and thus, novel therapeutic strategies are required. Recent research has focused on nutritional interventions to modify behaviour and reduce the deleterious consequences of both stress and ageing. In this context, emerging evidence indicate that phospholipids, a specific type of fat, are capable of improving a variety of cognitive processes in both animals and humans. The mechanisms underlying these positive effects are actively being investigated but as of yet are not fully elucidated. In this review, we summarise the preclinical and clinical studies available on phospholipid-based strategies for improved brain health across the lifespan. Moreover, we summarize the hypothesized direct and indirect mechanisms of action of these lipid-based interventions which may be used to promote resilience to stress and improve age-related cognitive decline in vulnerable populations.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Grasas de la Dieta/farmacología , Microbioma Gastrointestinal , Desarrollo Humano/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Fosfolípidos/metabolismo , Estrés Psicológico/metabolismo , Animales , Disfunción Cognitiva/dietoterapia , Humanos , Estrés Psicológico/dietoterapia
6.
Bioorg Med Chem Lett ; 19(5): 1287-91, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19208472

RESUMEN

A novel class of alpha7 nicotinic acetylcholine receptor (nAChR) agonists has been discovered through high-throughput screening. The cis gamma-lactam scaffold has been optimized to reveal highly potent and selective alpha7 nAChR agonists with in vitro activity and selectivity and with good brain penetration in mice.


Asunto(s)
Lactamas/química , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión , Encéfalo/metabolismo , Humanos , Ratones , Agonistas Nicotínicos/química , Unión Proteica , Conejos , Receptores Nicotínicos/química , Receptor Nicotínico de Acetilcolina alfa 7
7.
J Med Chem ; 52(16): 5093-107, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19642674

RESUMEN

Retaining agonistic activity at the glycine coagonist site of the NMDA receptor in molecules derived from glycine or d-serine has proven to be difficult because in the vicinity of the alpha-amino acid group little substitution is tolerated. We have solved this problem by replacing the hydroxy group of d-serine with an amido group, thus keeping the hydrogen donor function and allowing for further substitution and exploration of the adjacent space. Heterocyclic substitutions resulted in a series of 3-acylamino-2-aminopropionic acid derivatives, with high affinities in a binding assay for the glycine site. In a functional assay assessing the activation of the glycine site, these compounds displayed a wide range of intrinsic efficacies, from antagonism to a high degree of partial agonism. Structure-activity relationships reveal that lipophilic substituents, presumably filling an additional hydrophobic pocket, are accepted by the glycine site, provided that they are separated from the alpha-amino acid group by a short linker.


Asunto(s)
Alanina/análogos & derivados , Alanina/síntesis química , Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Alanina/farmacología , Animales , Sitios de Unión , Corteza Cerebral/metabolismo , Diseño de Fármacos , Agonismo Parcial de Drogas , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Modelos Moleculares , Ensayo de Unión Radioligante , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA