Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Trends Genet ; 38(1): 8-11, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34167831

RESUMEN

Haldane's rule, which states that the heterogametic sex (XY or ZW females) fares more poorly in interspecific hybrids, is generally attributed to absence of one of the two species' X/Z chromosomes. However, Haldane's rule is also observed in mouse placentas despite paternal X silencing. This pattern could reflect Y chromosomes having evolved to promote growth due to maternal-paternal conflict. If so, balanced sex investment arises from a complex intra- and intergenomic duel.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Animales , Femenino , Ratones , Cromosomas Sexuales/genética , Cromosoma X , Cromosoma Y/genética
3.
Bioessays ; 45(12): e2100164, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37941456

RESUMEN

The creeping vole Microtus oregoni exhibits remarkably transformed sex chromosome biology, with complete chromosome drive/drag, X-Y fusions, sex reversed X complements, biased X inactivation, and X chromosome degradation. Beginning with a selfish X chromosome, I propose a series of adaptations leading to this system, each compensating for deleterious consequences of the preceding adaptation: (1) YY embryonic inviability favored evolution of a selfish feminizing X chromosome; (2) the consequent Y chromosome transmission disadvantage favored X-Y fusion ("XP "); (3) Xist-based silencing of Y-derived XP genes favored a second X-Y fusion ("XM "); (4) X chromosome dosage-related costs in XP XM males favored the evolution of XM loss during spermatogenesis; (5) X chromosomal dosage-related costs in XM 0 females favored the evolution of XM drive during oogenesis; and (6) degradation of the non-recombining XP favored the evolution of biased X chromosome inactivation. I discuss recurrent rodent sex chromosome transformation, and selfish genes as a constructive force in evolution.


Asunto(s)
Cromosomas Sexuales , Cromosoma X , Masculino , Femenino , Animales , Cromosomas Sexuales/genética , Cromosoma X/genética , Cromosoma Y/genética , Inactivación del Cromosoma X/genética , Arvicolinae/genética
4.
Nucleic Acids Res ; 51(20): 10884-10908, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819006

RESUMEN

Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.


Asunto(s)
Evolución Molecular , Intrones , Animales , Hongos/genética , Genoma , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(48): e2209766119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417430

RESUMEN

There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.


Asunto(s)
Elementos Transponibles de ADN , Eucariontes , Animales , Intrones/genética , Eucariontes/genética , Elementos Transponibles de ADN/genética , Filogenia , Células Eucariotas
6.
Proc Natl Acad Sci U S A ; 119(23): e2122580119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653559

RESUMEN

Haplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes). However, why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis posits that X-linked genes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis holds that conflict between genes drives genetic system turnover; under this model, X-linked genes could promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and genetic transmission. We studied lineages where we can distinguish these hypotheses: species with germline PGE that retain an XX/X0 sex determination system (gPGE+X). Because evolving PGE in these cases involves changes in transmission without increases in male hemizygosity, a high degree of X linkage in these systems is predicted by the Intragenomic Conflict Hypothesis but not the Haploid Viability Hypothesis. To quantify the degree of X linkage, we sequenced and compared 7 gPGE+X species' genomes with 11 related species with typical XX/XY or XX/X0 genetic systems, representing three transitions to gPGE. We find highly increased X linkage in both modern and ancestral genomes of gPGE+X species compared to non-gPGE relatives and recover a significant positive correlation between percent X linkage and the evolution of gPGE. These empirical results substantiate longstanding proposals for a role for intragenomic conflict in the evolution of genetic systems such as HD/PGE.


Asunto(s)
Genoma , Procesos de Determinación del Sexo , Cromosoma X , Animales , Diploidia , Evolución Molecular , Genoma/genética , Haploidia , Masculino , Cromosoma X/genética
7.
Trends Genet ; 37(2): 102-104, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33243450

RESUMEN

The sex-determining gene SRY has undergone rapid evolution in rodents. Curiously, a new study by Miyawaki et al. reveals that a recently evolved SRY gene sequence antagonizes SRY protein stability, necessitating splicing of a novel intron. Other data suggest that this troublesome gene region has noncoding RNA functions, possibly related to conflict between sex chromosomes.


Asunto(s)
Genes sry/genética , Genoma/genética , ARN no Traducido/genética , Roedores/genética , Procesos de Determinación del Sexo/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Intrones/genética , Filogenia , Cromosomas Sexuales/genética
8.
Cytogenet Genome Res ; 163(1-2): 24-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37482055

RESUMEN

Intrachromosomal insertions are complex structural rearrangements that are challenging to interpret using classical cytogenetic methods. We report a male patient carrying a recombinant X chromosome derived from a maternally inherited intrachromosomal insertion. The patient exhibited developmental delay, intellectual disability, behavioral disorder, and dysmorphic facial features. To accurately identify the rearrangements in the abnormal X chromosome, additional cytogenetic studies were conducted, including fluorescence in situ hybridization (FISH), multicolor-banding FISH, and array comparative genomic hybridization. The results showed a recombinant X chromosome, resulting in a 13.05 Mb interstitial duplication of segment Xp22.33-Xp22.13, which was inserted at cytoband Xq26.1. The duplicated region encompasses 99 genes, some of which are associated with the patient's clinical manifestations. We propose that the combined effects of the Xp-duplicated genes may contribute to the patient's phenotype.


Asunto(s)
Aberraciones Cromosómicas , Discapacidad Intelectual , Humanos , Masculino , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Análisis Citogenético , Discapacidad Intelectual/genética , Cromosomas Humanos X/genética , Duplicación Cromosómica
9.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298563

RESUMEN

We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.


Asunto(s)
Tephritidae , Wolbachia , Animales , Wolbachia/genética , Triptófano , Tephritidae/metabolismo , Insectos/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas , Genómica
10.
Mol Biol Evol ; 38(9): 3737-3741, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33956142

RESUMEN

Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Evolución Biológica , Tamaño del Genoma , Mamíferos/genética , Densidad de Población
11.
Mol Biol Evol ; 38(10): 4166-4186, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-33772558

RESUMEN

Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron-exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.


Asunto(s)
Eucariontes , Evolución Molecular , Eucariontes/genética , Genoma Fúngico , Intrones/genética , Filogenia
12.
Nature ; 538(7626): 533-536, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27760113

RESUMEN

The discovery of introns four decades ago was one of the most unexpected findings in molecular biology. Introns are sequences interrupting genes that must be removed as part of messenger RNA production. Genome sequencing projects have shown that most eukaryotic genes contain at least one intron, and frequently many. Comparison of these genomes reveals a history of long evolutionary periods during which few introns were gained, punctuated by episodes of rapid, extensive gain. However, although several detailed mechanisms for such episodic intron generation have been proposed, none has been empirically supported on a genomic scale. Here we show how short, non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from the gene sequence that is duplicated upon transposon insertion, allowing perfect splicing out of the RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between pre-existing nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases and prevalence of nucleosome-sized exons observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism that can plausibly account for episodes of rapid, extensive intron gain during eukaryotic evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Eucariontes/genética , Evolución Molecular , Genoma/genética , Genómica , Intrones/genética , Nucleosomas/genética , Secuencia de Bases , Chlorophyta/genética , Codón/genética , Exones/genética , Sitios de Empalme de ARN/genética , Recombinación Genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Estramenopilos/genética
13.
J Hered ; 113(3): 235-237, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35325170

RESUMEN

Sex determination mechanisms vary widely across animals, but show remarkable degrees of recurrent evolution. Recurrent features of sex determination have largely been attributed to recurrent cooption of shared ancestral regulatory circuits. However, a new study on sex determination in Daphnia magna reveals both recurrent evolution of specific regulatory logic and apparently recurrent recruitment of a regulator, suggesting a role for optimization in recurrent patterns of sex determination mechanisms.


Asunto(s)
Daphnia , Procesos de Determinación del Sexo , Animales , Daphnia/genética , Evolución Molecular , Cromosomas Sexuales
14.
Nucleic Acids Res ; 48(13): 7066-7078, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32484558

RESUMEN

During nuclear maturation of most eukaryotic pre-messenger RNAs and long non-coding RNAs, introns are removed through the process of RNA splicing. Different classes of introns are excised by the U2-type or the U12-type spliceosomes, large complexes of small nuclear ribonucleoprotein particles and associated proteins. We created intronIC, a program for assigning intron class to all introns in a given genome, and used it on 24 eukaryotic genomes to create the Intron Annotation and Orthology Database (IAOD). We then used the data in the IAOD to revisit several hypotheses concerning the evolution of the two classes of spliceosomal introns, finding support for the class conversion model explaining the low abundance of U12-type introns in modern genomes.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Intrones/genética , Empalme del ARN/genética , Empalmosomas/genética , Animales , Genoma , Humanos , Filogenia , Plantas/genética , ARN Largo no Codificante/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Levaduras/genética
15.
J Mol Evol ; 89(9-10): 598-600, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34698879

RESUMEN

While much excitement has attended the discovery and study of circular RNAs, a new study in Cell Reports suggests that most mammalian circRNAs are not only functionless, but in fact costly. Comparison across three species is also consistent with the influential but rarely tested Drift-Barrier Hypothesis of molecular complexity. According to this hypothesis, nonessential genomic elements are slightly deleterious elements that fix by genetic drift and, thus, are generally more abundant in species with small effective population sizes. I discuss the implications of these new results for the Drift-Barrier hypothesis. In particular, I note the distinction between two classes of genomic elements, based on whether they are created by 'standard' small-scale mutations (basepair substitutions, indels, etc.) or larger, more idiosyncratic mutations (segmental duplications, transposable element propagation, etc.) I suggest that the Drift-Barrier Hypothesis is likely to apply to the former class, but perhaps not the latter class.


Asunto(s)
Evolución Molecular , ARN Circular , Animales , Elementos Transponibles de ADN , Flujo Genético , Densidad de Población
16.
Proc Biol Sci ; 288(1957): 20211478, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34404256

RESUMEN

Despite its importance, the selective and mechanistic forces governing recombination remain obscure. A recent study of facultatively asexual honeybees suggests a clear case of adaptive adjustment of recombination rate. That these bees' atypical genetics were central to the experiment underscores the utility of genetic oddities as model organisms for studying fundamental questions.


Asunto(s)
Partenogénesis , Reproducción , Animales , Abejas/genética , Recombinación Genética
17.
J Hered ; 112(4): 328-334, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33884423

RESUMEN

Recent work has illuminated the bizarre sex chromosomal system of the mandarin vole, Lasiopodomys mandarinus. The ancestral sex chromosomes have been replaced by 4 neo-sex chromosomes. These sex chromosomes show non-Mendelian inheritance and epistatic sex determination, as well as unaccounted-for karyotype frequencies. I suggest a model to account for the complex observed inheritance patterns. The proposed model combines putative adaptations previously observed in rodents, including feminizing X chromosomes and Y-biased spermatogenesis, with a novel proposed mechanism of genomic imprinting of X-linked genes during oogenesis in XY females. Alternative possibilities are also discussed. The proposed scenario provides a relatively simple and testable model for the function and origins of a remarkably complex mammalian sex chromosomal system.


Asunto(s)
Arvicolinae , Cromosomas Sexuales , Animales , Arvicolinae/genética , Femenino , Cariotipo , Cariotipificación , Masculino , Cromosomas Sexuales/genética , Cromosoma X/genética
18.
Nature ; 505(7482): 174-9, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24402279

RESUMEN

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.


Asunto(s)
Evolución Molecular , Genoma/genética , Tiburones/genética , Animales , Calcio/metabolismo , Linaje de la Célula/inmunología , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Eliminación de Gen , Genómica , Inmunidad Celular/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Osteogénesis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estructura Terciaria de Proteína/genética , Tiburones/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Factores de Tiempo , Vertebrados/clasificación , Vertebrados/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
19.
BMC Evol Biol ; 19(1): 162, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375061

RESUMEN

BACKGROUND: Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2-dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. RESULTS: We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to 'long' G. lamblia introns, RNA secondary structural potential is evident for 'long' (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S. salmonicida; cumulatively, illustrating significant snRNA differences within some diplomonads. Finally, we studied spliceosomal protein complements and find protein sets in Giardia, Spironucleus and Trepomonas sp. PC1 highly- reduced but well conserved across the clade, with between 44 and 62 out of 174 studied spliceosomal proteins detectable. Comparison with more distant relatives revealed a highly nested pattern, with the more intron-rich fornicate Kipferlia bialata retaining 87 total proteins including nearly all those observed in the diplomonad representatives, and the oxymonad Monocercomonoides retaining 115 total proteins including nearly all those observed in K. bialata. CONCLUSIONS: Comparisons in diplomonad representatives and species of other closely-related metamonad groups indicates similar patterns of intron structural conservation and spliceosomal protein composition but significant divergence of snRNA structure in genomically-reduced species. Relative to other eukaryotes, loss of evolutionarily-conserved snRNA domains and common sets of spliceosomal proteins point to a more streamlined splicing mechanism, where intron sequences and structures may be functionally compensating for the minimalization of spliceosome components.


Asunto(s)
Secuencia Conservada , Diplomonadida/genética , Intrones/genética , Parabasalidea/genética , Filogenia , Empalmosomas/genética , Regiones no Traducidas 5'/genética , Emparejamiento Base/genética , Secuencia de Bases , Genoma , Conformación de Ácido Nucleico , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Proteínas Ribosómicas/genética
20.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23201678

RESUMEN

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Asunto(s)
Núcleo Celular/genética , Cercozoos/genética , Criptófitas/genética , Evolución Molecular , Genoma/genética , Mosaicismo , Simbiosis/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Empalme Alternativo/genética , Cercozoos/citología , Cercozoos/metabolismo , Criptófitas/citología , Criptófitas/metabolismo , Citosol/metabolismo , Duplicación de Gen/genética , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genoma de Plastidios/genética , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA