Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 17(8): 5092-5098, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28677387

RESUMEN

The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

2.
Nano Lett ; 16(10): 6604-6609, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27608508

RESUMEN

Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.

3.
Nano Lett ; 15(10): 7077-85, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26383602

RESUMEN

Biological self-healing involves the autonomous localization of healing agents at the site of damage. Herein, we design and characterize a synthetic repair system where self-propelled nanomotors autonomously seek and localize at microscopic cracks and thus mimic salient features of biological wound healing. We demonstrate that these chemically powered catalytic nanomotors, composed of conductive Au/Pt spherical Janus particles, can autonomously detect and repair microscopic mechanical defects to restore the electrical conductivity of broken electronic pathways. This repair mechanism capitalizes on energetic wells and obstacles formed by surface cracks, which dramatically alter the nanomotor dynamics and trigger their localization at the defects. By developing models for self-propelled Janus nanomotors on a cracked surface, we simulate the systems' dynamics over a range of particle speeds and densities to verify the process by which the nanomotors autonomously localize and accumulate at the cracks. We take advantage of this localization to demonstrate that the nanomotors can form conductive "patches" to repair scratched electrodes and restore the conductive pathway. Such a nanomotor-based repair system represents an important step toward the realization of biomimetic nanosystems that can autonomously sense and respond to environmental changes, a development that potentially can be expanded to a wide range of applications, from self-healing electronics to targeted drug delivery.


Asunto(s)
Nanoestructuras
4.
ACS Nano ; 10(6): 5619-34, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27219742

RESUMEN

Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

5.
Adv Mater ; 27(30): 4411-4417, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26121113

RESUMEN

Hydrogel microfish featuring biomimetic structures, locomotive capabilities, and functionalized nanoparticles are engineered using a rapid 3D printing platform: microscale continuous -optical printing (µCOP). The 3D-printed -microfish exhibit chemically powered and magnetically guided propulsion, as well as highly efficient detoxification capabilities that highlight the technical versatility of this platform for engineering advanced functional microswimmers for diverse biomedical applications.

6.
Adv Mater ; 27(30): 4390, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29897136

RESUMEN

J. Wang, S. Chen, and co-workers use a newly developed 3D printing technique on page 4411 to print freely swimming microfish with diverse designs. The system uses light to print biocompatible hydrogels and functional nanoparticles into the biomimetic shape of fish at a feature size of 1 µm. These microfish are powered by harvesting the energy from the surrounding fluid environment and guided remotely by a magnetic field. Efficient detoxification is shown by incorporation of toxin-absorbing functional nanoparticles. This work can be readily extended to engineer advanced functional biorobotics for diverse applications ranging from drug delivery to environmental detoxification.

7.
Sci Rep ; 5: 13226, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26285032

RESUMEN

Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

8.
Nanoscale ; 7(17): 7833-40, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25853933

RESUMEN

Motion-based chemical sensing using microscale particles has attracted considerable recent attention. In this paper, we report on new experiments and Brownian dynamics simulations that cast light on the dynamics of both passive and active microrods (gold wires and gold-platinum micromotors) in a silver ion gradient. We demonstrate that such microrods can be used for threat detection in the form of a silver ion source, allowing for the determination of both the location of the source and concentration of silver. This threat detection strategy relies on the diffusiophoretic motion of both passive and active microrods in the ionic gradient and on the speed acceleration of the Au-Pt micromotors in the presence of silver ions. A Langevin model describing the microrod dynamics and accounting for all of these effects is presented, and key model parameters are extracted from the experimental data, thereby providing a reliable estimate for the full spatiotemporal distribution of the silver ions in the vicinity of the source.


Asunto(s)
Metales Pesados/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Nanotecnología/métodos , Contaminantes Atmosféricos/análisis , Técnicas de Química Analítica , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA