Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Psychiatry ; 28(9): 3856-3873, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37773446

RESUMEN

Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Astrocitos/fisiología , Neuronas Serotoninérgicas , Serotonina , Transducción de Señal/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-39247994

RESUMEN

PURPOSE OF REVIEW: The use of implantable medical devices (IMDs) continues to increase with estimates that 10% of the American population will have an IMD in their lifetime. IMDs require special considerations for management in the perioperative period to ensure optimal patient care and patient safety. This review summarizes the current perioperative considerations for IMDs. RECENT FINDINGS: This review summarizes perioperative recommendations for spinal cord stimulators, deep brain stimulators, peripheral nerve stimulators, vagus nerve stimulators, muscle stimulators, intrathecal drug delivery systems, implantable infusion pumps, artificial pancreas devices, continuous glucose monitors, and cochlear implants. There are multiple publications and guidelines regarding the perioperative considerations of cardiac implantable electronic devices; thus, this review excludes those devices. This review includes recommendations on management of the device perioperatively, the potential complications, and postoperative care of the device. SUMMARY: There are very few guidelines regarding the perioperative management of IMDs. Given the significant impact that these devices have on patient care and safety, evidence-based guidelines should be established.

3.
Inhal Toxicol ; 35(1-2): 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36325922

RESUMEN

Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Ratas , Masculino , Animales , Material Particulado/toxicidad , Tamaño de la Partícula , Dopamina , Ratas Wistar , Actividad Motora , Contaminantes Atmosféricos/toxicidad
4.
Fish Physiol Biochem ; 47(4): 1211-1227, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34173183

RESUMEN

Cichlasoma dimerus is a neotropical cichlid that has been used as a biological model for neuroendocrinology studies. However, its culture is problematic in terms of larval feeding to allow having enough fry quantity and quality. Larviculture requires full knowledge about the digestive system and nutrition; therefore, this study was intended to assess the digestive enzymes' changes at different ages during the early ontogeny. Acid protease activity was detectable from the first day after hatching (dah), increasing to its maximum peaks on 9 dah. In contrast, alkaline proteases had low activity in the first days of life but reached their maximum activity on 17 dah. Chymotrypsin, L-aminopeptidase, and carboxypeptidase A activities increased at 6 dah, while trypsin activity was first detected on 13 dah and reached its maximum activity on 17 dah. Lipase and α-amylase activity were detectable at low levels in the first days of life, but the activity fluctuated and reaching its maximum activity at 21 dah. Alkaline phosphatase continued to oscillate and had two maximum activity peaks, the first at 6 dah and the second at 19 dah. Zymograms of alkaline proteases on day 6 dah six revealed four activity bands with molecular weights from 16.1 to 77.7 kDa. On 13 dah, two more activity bands of 24.4 and 121.9 kDa were detected, having a total of six proteases. The enzymatic activity analyzes indicate the digestive system shows the low activity of some enzymes in the first days after hatching, registering significant increases on 6 dah and the maximum peaks of activities around at 17 dah. Therefore, we recommend replacing live food with dry feed and only providing dry feed after day 17 dah.


Asunto(s)
Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Hidrolasas/metabolismo , Animales , Digestión , Larva/crecimiento & desarrollo , Larva/metabolismo
5.
Chem Res Toxicol ; 33(2): 536-552, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31927885

RESUMEN

Metal-derived nanoparticles (Mt-NPs) are increasingly used in cosmetology due to their ultraviolet shielding (titanium dioxide [TiO2]), antioxidant (cerium dioxide [CeO2]), and biocidal (silver [Ag]) properties. In the absence of overt toxicity (i.e., cell death), Mt-NPs are considered safe for cosmetic applications. However, there is little understanding about the mechanisms involved in the survival of keratinocytes exposed to subtoxic levels of Mt-NPs. Human keratinocytes (HaCaT) were exposed subacutely to subtoxic concentrations (≤30 µg/mL, 48-72 h) of rutile (r) TiO2 (cylindrical), CeO2 (cubic) and Ag (spherical) with a core/hydrodynamic size of <50/<100 nm and >98% purity. Mt-NP uptake was indirectly quantified by changes in the light side scatter, where the kinetics (time/dose-response) suggested that the three types of Mt-NPs were similarly uptaken by keratinocytes. rTiO2 and CeO2, but not Ag-NPs, increased autophagy, whose inhibition prompted cell death. No increase in the steady-state levels of reactive oxygen species (ROS) was induced by exposure to any of the Mt-NPs tested. Interestingly, intracellular Ag-NP aggregates observed an increased far-red autofluorescence (≥740 nm em), which has been ascribed to their binding to thiol molecules such as glutathione (GSH). Accordingly, inhibition of GSH synthesis, but not the impairment of oxidized GSH recycling, sensitized keratinocytes to Ag-NPs suggesting that GSH homeostasis, and its direct scavenging of Ag-NPs, but not ROS, is essential for keratinocyte survival upon exposure to Ag-NP. rTiO2 and Ag, but not CeO2-NPs, compromised metabolic flux (glycolysis and respiration), but ATP levels were unaltered. Finally, we also observed that exposure to Mt-NPs sensitized keratinocytes to non-UV xenobiotic exposure (arsenite and paraquat). Our results demonstrate the differential contribution of autophagy and GSH homeostasis to the survival of human keratinocytes exposed to subtoxic concentrations of Mt-NPs and highlight the increased susceptibility of keratinocytes exposed to Mt-NPs to a second xenobiotic insult.


Asunto(s)
Cerio/farmacología , Queratinocitos/efectos de los fármacos , Nanopartículas/química , Plata/farmacología , Titanio/farmacología , Xenobióticos/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerio/química , Humanos , Queratinocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Plata/química , Propiedades de Superficie , Titanio/química , Xenobióticos/metabolismo
6.
Part Fibre Toxicol ; 16(1): 7, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30691489

RESUMEN

BACKGROUND: Exposure to particulate matter (PM) is associated with an adverse intrauterine environment, which can promote adult cardiovascular disease (CVD) risk. Ultrafine particles (UFP) (small size and large surface area/mass ratio) are systemically distributed, induce inflammation and oxidative stress, and have been associated with vascular endothelial dysfunction and arterial vasoconstriction, increasing hypertension risk. Placental stress and alterations in methylation of promoter regions of renin-angiotensin system (RAS)-related elements could be involved in UFP exposure-related programming of hypertension. We investigated whether in utero UFP exposure promotes placental stress by inflammation and oxidative stress, alterations in hydroxysteroid dehydrogenase 11b-type 2 (HSD11B2) and programming of RAS-related elements, and result in altered blood pressure in adult offspring. UFP were collected from ambient air using an aerosol concentrator and physicochemically characterized. Pregnant C57BL/6J pun/pun female mice were exposed to collected UFP (400 µg/kg accumulated dose) by intratracheal instillation and compared to control (nonexposed) and sterile H2O (vehicle) exposed mice. Embryo reabsorption and placental stress by measurement of the uterus, placental and fetal weights, dam serum and fetal cortisol, placental HSD11B2 DNA methylation and protein levels, were evaluated. Polycyclic aromatic hydrocarbon (PAH) biotransformation (CYP1A1 and NQO1 (NAD(P)H dehydrogenase (quinone)1)) enzymes, inflammation and oxidative stress in placentas and fetuses were measured. Postnatal day (PND) 50 in male offspring blood pressure was measured. Methylation and protein expression of (RAS)-related elements, angiotensin II receptor type 1 (AT1R) and angiotensin I-converting enzyme (ACE) in fetuses and lungs of PND 50 male offspring were also assessed. RESULTS: In utero UFP exposure induced placental stress as indicated by an increase in embryo reabsorption, decreases in the uterus, placental, and fetal weights, and HSD11B2 hypermethylation and protein downregulation. In utero UFP exposure induced increases in the PAH-biotransforming enzymes, intrauterine oxidative damage and inflammation and stimulated programming and activation of AT1R and ACE, which resulted in increased blood pressure in the PND 50 male offspring. CONCLUSIONS: In utero UFP exposure promotes placental stress through inflammation and oxidative stress, and programs RAS-related elements that result in altered blood pressure in the offspring. Exposure to UFP during fetal development could influence susceptibility to CVD in adulthood.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Placenta/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Desarrollo Fetal , Hipertensión/inducido químicamente , Hipertensión/embriología , Pulmón/efectos de los fármacos , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Masculino , Ratones Endogámicos C57BL , Tamaño de la Partícula , Peptidil-Dipeptidasa A/metabolismo , Placenta/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptor de Angiotensina Tipo 1/metabolismo , Propiedades de Superficie
7.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842467

RESUMEN

The interaction of leptin with its hepatic longest receptor (OBRb) promotes the phosphorylation of signal transducer and activator of transcription-3 (STAT3), protecting the liver from lipid accumulation. However, leptin signalling is disrupted in hepatic steatosis, causing leptin resistance. One promising strategy to combat this problem is the use of bioactive compounds such as polyphenols. Since resveratrol (RSV) is a modulator of lipid homeostasis in the liver, we investigated whether treatment with different doses of RSV restores appropriate leptin action and fat accumulation in palmitate-induced steatotic human hepatoma (HepG2) cells. Both RSV metabolism and the expression of molecules implicated in leptin signalling were analysed. RSV at a 10 µM concentration was entirely metabolized to resveratrol-3-sulfate after 24 and counteracted leptin resistance by increasing the protein levels of OBRb. In addition, RSV downregulated the expression of lipogenic genes including fatty acid synthase (Fas) and stearoyl-CoA desaturase-1 (Scd1) without any significant change in Sirtuin-1 (SIRT1) enzymatic activity. These results demonstrate that RSV restored leptin sensitivity in a cellular model of hepatic steatosis in a SIRT1-independent manner.


Asunto(s)
Leptina/metabolismo , Palmitatos/metabolismo , Receptores de Leptina/metabolismo , Resveratrol/farmacología , Biomarcadores , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo
8.
Glycobiology ; 28(2): 61-68, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206917

RESUMEN

GRP78 (an Mr 78 kDa calcium dependent glucose binding protein) is located in ER lumen. It functions as ER chaperone and translocates proteins for glycosylation at the asparagine residue present in the sequon Asn-X-Ser/Thr. Paraffin sections from N-glycosylation inhibitor tunicamycin treated ER-/PR-/HER2+ (double negative) breast tumor in athymic nude mice exhibited reduced N-glycan but increased GRP78 expression. We have evaluated the effect of tunicamycin on cellular localization of GRP78 in metastatic human breast cancer cells MDA-MB-231 (ER-/PR-/HER2-). Tunicamycin inhibited cell proliferation in a time and dose-dependent manner. Nonmetastatic estrogen receptor positive (ER+) MCF-7 breast cancer cells were also equally effective. GRP78 expression (protein and mRNA) was higher in tunicamycin (1.0 µg/mL) treated MCF-7 and MDA-MB-231 cells. GRP78 is an ER stress marker, so we have followed its intracellular localization using immunofluorescence microscopy after subjecting the cancer cells to various stress conditions. Unfixed cells stained with either FITC-conjugated Concanavalin A (Con A) or Texas-red conjugated wheat germ agglutinin (WGA) exhibited surface expression of N-glycans but not GRP78. GRP78 became detectable only after a brief exposure of cells to ice-cold methanol. Western blotting did not detect GRP78 in conditioned media of cancer cells whereas it did for MMP-1. The conclusion, GRP78 is expressed neither on the outer-leaflet of the (ER-/PR-/HER2-) human breast cancer cells nor it is secreted into the culture media during tunicamycin-induced ER stress. Our study therefore suggests strongly that anti-tumorigenic action of tunicamycin can be modeled to develop next generation cancer therapy, i.e., glycotherapy for treating breast and other sold tumors.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Chaperón BiP del Retículo Endoplásmico , Femenino , Glicosilación , Proteínas de Choque Térmico/genética , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tunicamicina/toxicidad
9.
Nanomedicine ; 13(4): 1363-1375, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28219741

RESUMEN

The human glial-cell derived neurotrophic factor (hGDNF) gene transfer by neurotensin (NTS)-polyplex nanoparticles functionally restores the dopamine nigrostriatal system in experimental Parkinson's disease models. However, high levels of sustained expression of GDNF eventually can cause harmful effects. Herein, we report an improved NTS-polyplex nanoparticle system that enables regulation of hGDNF expression within dopaminergic neurons. We constructed NTS-polyplex nanoparticles containing a single bifunctional plasmid that codes for the reverse tetracycline-controlled transactivator advanced (rtTA-Adv) under the control of NBRE3x promoter, and for hGDNF under the control of tetracycline-response element (TRE). Another bifunctional plasmid contained the enhanced green fluorescent protein (GFP) gene. Transient transfection experiments in N1E-115-Nurr1 cells showed that doxycycline (100 ng/mL) activates hGDNF and GFP expression. Doxycycline (5 mg/kg, i.p.) administration in rats activated hGDNF expression only in transfected dopaminergic neurons, whereas doxycycline withdrawal silenced transgene expression. Our results offer a specific doxycycline-regulated system suitable for nanomedicine-based treatment of Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Doxiciclina/farmacología , Regulación de la Expresión Génica , Nanopartículas/química , Neurotensina/química , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/genética , Animales , Línea Celular Tumoral , Vectores Genéticos , Humanos , Masculino , Ratones , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Plásmidos , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Elementos de Respuesta , Transfección , Transgenes
10.
Proc Natl Acad Sci U S A ; 111(28): 10239-44, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982135

RESUMEN

There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.


Asunto(s)
Océanos y Mares , Plásticos/efectos adversos , Contaminantes del Agua/efectos adversos , Contaminación del Agua/efectos adversos
11.
Part Fibre Toxicol ; 12: 17, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113123

RESUMEN

BACKGROUND: Particulate matter (PM) adverse effects on health include lung and heart damage. The renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) endocrine systems are involved in the pathophysiology of cardiovascular diseases and have been found to impact lung diseases. The aim of the present study was to evaluate whether PM exposure regulates elements of RAAS and KKS. METHODS: Sprague-Dawley rats were acutely (3 days) and subchronically (8 weeks) exposed to coarse (CP), fine (FP) or ultrafine (UFP) particulates using a particulate concentrator, and a control group exposed to filtered air (FA). We evaluated the mRNA of the RAAS components At1, At2r and Ace, and of the KKS components B1r, B2r and Klk-1 by RT-PCR in the lungs and heart. The ACE and AT1R protein were evaluated by Western blot, as were HO-1 and γGCSc as indicators of the antioxidant response and IL-6 levels as an inflammation marker. We performed a binding assay to determinate AT1R density in the lung, also the subcellular AT1R distribution in the lungs was evaluated. Finally, we performed a histological analysis of intramyocardial coronary arteries and the expression of markers of heart gene reprogramming (Acta1 and Col3a1). RESULTS: The PM fractions induced the expression of RAAS and KKS elements in the lungs and heart in a time-dependent manner. CP exposure induced Ace mRNA expression and regulated its protein in the lungs. Acute and subchronic exposure to FP and UFP induced the expression of At1r in the lungs and heart. All PM fractions increased the AT1R protein in a size-dependent manner in the lungs and heart after subchronic exposure. The AT1R lung protein showed a time-dependent change in subcellular distribution. In addition, the presence of AT1R in the heart was accompanied by a decrease in HO-1, which was concomitant with the induction of Acta1 and Col3a1 and the increment of IL-6. Moreover, exposure to all PM fractions increased coronary artery wall thickness. CONCLUSION: We demonstrate that exposure to PM induces the expression of RAAS and KKS elements, including AT1R, which was the main target in the lungs and the heart.


Asunto(s)
Sistema Calicreína-Quinina/efectos de los fármacos , Pulmón/efectos de los fármacos , Miocardio/metabolismo , Material Particulado/toxicidad , Sistema Renina-Angiotensina/efectos de los fármacos , Actinas/genética , Actinas/metabolismo , Animales , Antioxidantes/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica , Exposición por Inhalación/efectos adversos , Sistema Calicreína-Quinina/genética , Pulmón/metabolismo , Pulmón/patología , Miocardio/patología , Tamaño de la Partícula , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/genética , Factores de Tiempo
12.
J Relig Health ; 54(4): 1221-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24687261

RESUMEN

This paper examines relationships between body weight, religion, and gender while controlling for relevant covariates and body mass index (BMI), a measure of physical/biological body type. Using data from the 2004 Survey of Texas Adults (n = 1,504), we present results of ordered logistic regression models which indicate that religious factors work distinctly for men and women when controlling for BMI. While church attendance is associated with lower odds of overweight perceptions among women, it is religious salience that is associated with lower odds of self-reported excess weight in men. Implications for research which associates religious and physiological factors are discussed.


Asunto(s)
Imagen Corporal/psicología , Índice de Masa Corporal , Peso Corporal/fisiología , Religión y Psicología , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoinforme , Factores Sexuales , Encuestas y Cuestionarios , Texas , Adulto Joven
14.
Stroke ; 45(10): 3097-100, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25147331

RESUMEN

BACKGROUND AND PURPOSE: Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity and improves recovery in models of cortical ischemic stroke. However, VNS therapy has not been applied in a model of subcortical intracerebral hemorrhage (ICH). We hypothesized that VNS paired with rehabilitative training after ICH would enhance recovery of forelimb motor function beyond rehabilitative training alone. METHODS: Rats were trained to perform an automated, quantitative measure of forelimb function. Once proficient, rats received an intrastriatal injection of bacterial collagenase to induce ICH. Rats then underwent VNS paired with rehabilitative training (VNS+Rehab; n=14) or rehabilitative training without VNS (Rehab; n=12). Rehabilitative training began ≥9 days after ICH and continued for 6 weeks. RESULTS: VNS paired with rehabilitative training significantly improved recovery of forelimb function when compared with rehabilitative training without VNS. The VNS+Rehab group displayed a 77% recovery of function, whereas the Rehab group only exhibited 29% recovery. Recovery was sustained after cessation of stimulation. Both groups performed similar amounts of trials during rehabilitative, and lesion size was not different between groups. CONCLUSIONS: VNS paired with rehabilitative training confers significantly improved forelimb recovery after ICH compared to rehabilitative training without VNS.


Asunto(s)
Hemorragia Cerebral/rehabilitación , Recuperación de la Función/fisiología , Estimulación del Nervio Vago/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley
15.
J Toxicol Environ Health A ; 77(19): 1164-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25119738

RESUMEN

Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Inflamación/patología , Lesión Pulmonar/patología , Material Particulado/toxicidad , Enfermedad Aguda , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Quimiocina CXCL2/metabolismo , Ciudades , Inflamación/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Masculino , México , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Ratas , Ratas Endogámicas WKY , Trombosis/inducido químicamente , Trombosis/patología , Factor de Necrosis Tumoral alfa/metabolismo , Vasoconstricción/efectos de los fármacos
16.
J Clin Med ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999507

RESUMEN

Background: Older adults with bipolar disorder (OABD) are individuals aged 50 years and older with bipolar disorder (BD). People with BD may have fewer coping strategies or resilience. A long duration of the disease, as seen in this population, could affect the development of resilience strategies, but this remains under-researched. Therefore, this study aims to assess resilience levels within the OABD population and explore associated factors, hypothesizing that resilience could improve psychosocial functioning, wellbeing and quality of life of these patients. Methods: This study sampled 33 OABD patients from the cohort at the Bipolar and Depressive Disorders Unit of the Hospital Clinic of Barcelona. It was an observational, descriptive and cross-sectional study. Demographic and clinical variables as well as psychosocial functioning, resilience and cognitive reserve were analyzed. Resilience was measured using the CD-RISC-10. Non-parametric tests were used for statistical analysis. Results: The average CD-RISC-10 score was 25.67 points (SD 7.87). Resilience negatively correlated with the total number of episodes (p = 0.034), depressive episodes (p = 0.001), and the FAST (p < 0.001). Participants with normal resilience had a lower psychosocial functioning (p = 0.046), a higher cognitive reserve (p = 0.026), and earlier onset (p = 0.037) compared to those with low resilience. Conclusions: OABD individuals may have lower resilience levels which correlate with more psychiatric episodes, especially depressive episodes and worse psychosocial functioning and cognitive reserve. Better understanding and characterization of resilience could help in early identification of patients requiring additional support to foster resilience and enhance OABD management.

17.
Discov Nano ; 19(1): 36, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407768

RESUMEN

Bare and doped zinc oxide nanomaterials (ZnO NMs) are of great interest as multifunctional platforms for biomedical applications. In this study, we systematically investigate the physicochemical properties of Aluminum doped ZnO (AZO) and its bio-interactions with neuroblastoma (SH-SY5Y) and red blood (RBCs) cells. We provide a comprehensive chemical and structural characterization of the NMs. We also evaluated the biocompatibility of AZO NMs using traditional toxicity assays and advanced microscopy techniques. The toxicity of AZO NMs towards SH-SY5Y cells, decreases as a function of Al doping but is higher than the toxicity of ZnO NMs. Our results show that N-acetyl cysteine protects SH-SY5Y cells against reactive oxygen species toxicity induced by AZO NMs. ZnO and AZO NMs do not exert hemolysis in human RBCs at the doses that cause toxicity (IC50) in neuroblastoma cells. The Atomic force microscopy qualitative analysis of the interaction of SH-SY5Y cells with AZO NMs shows evidence that the affinity of the materials with the cells results in morphology changes and diminished interactions between neighboring cells. The holotomographic microscopy analysis demonstrates NMs' internalization in SH-SY5Y cells, changes in their chemical composition, and the role of lipid droplets in the clearance of toxicants.

18.
Chemosphere ; 362: 142622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880264

RESUMEN

The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 µg/mL SEOM-PM2.5. Exposure to 5 µg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 µg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.


Asunto(s)
Contaminantes Atmosféricos , Bronquios , Supervivencia Celular , Células Epiteliales , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Solventes , Humanos , Células Epiteliales/efectos de los fármacos , Material Particulado/toxicidad , Línea Celular , Contaminantes Atmosféricos/toxicidad , Supervivencia Celular/efectos de los fármacos , Bronquios/citología , Bronquios/efectos de los fármacos , Solventes/toxicidad , Solventes/química , Hidrocarburos Policíclicos Aromáticos/toxicidad , México , Especies Reactivas de Oxígeno/metabolismo
19.
Res Sq ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352490

RESUMEN

Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery. To do so, we characterized the effect of tactile rehabilitation combined with VNS across a range of stimulation intensities on recovery of somatosensory function in a rat model of chronic sensory loss in the forelimb. Consistent with previous studies in other applications, we find that moderate intensity VNS yields the most effective restoration of somatosensation, and both lower and higher VNS intensities fail to enhance recovery compared to rehabilitation without VNS. We next used the optimized intensity to evaluate the mechanisms that underlie recovery. We find that moderate intensity VNS enhances transcription of Arc, a canonical mediator of synaptic plasticity, in the cortex, and that transcript levels were correlated with the degree of somatosensory recovery. Moreover, we observe that blocking plasticity by depleting acetylcholine in the cortex prevents the VNS-dependent enhancement of somatosensory recovery. Collectively, these findings identify neural mechanisms that subserve VNS-dependent somatosensation recovery and provide a basis for selecting optimal stimulation parameters in order to facilitate translation of this potential intervention.

20.
Sci Rep ; 14(1): 19448, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169080

RESUMEN

Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery. To do so, we characterized the effect of tactile rehabilitation combined with VNS across a range of stimulation intensities on recovery of somatosensory function in a rat model of chronic sensory loss in the forelimb. Consistent with previous studies in other applications, we find that moderate intensity VNS yields the most effective restoration of somatosensation, and both lower and higher VNS intensities fail to enhance recovery compared to rehabilitation without VNS. We next used the optimized, moderate intensity to evaluate the mechanisms that underlie recovery. We find that moderate intensity VNS enhances transcription of Arc, a canonical mediator of synaptic plasticity, in the cortex, and that transcript levels were correlated with the degree of somatosensory recovery. Moreover, we observe that blocking plasticity by depleting acetylcholine in the cortex prevents the VNS-dependent enhancement of somatosensory recovery. Collectively, these findings identify neural mechanisms that subserve VNS-dependent somatosensation recovery and provide a basis for selecting optimal stimulation parameters in order to facilitate translation of this potential intervention.


Asunto(s)
Plasticidad Neuronal , Recuperación de la Función , Corteza Somatosensorial , Estimulación del Nervio Vago , Animales , Estimulación del Nervio Vago/métodos , Ratas , Corteza Somatosensorial/fisiología , Recuperación de la Función/fisiología , Plasticidad Neuronal/fisiología , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA