Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145033

RESUMEN

Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.


Asunto(s)
Agricultura/métodos , Alimentación Animal , Carbono/química , Productos Agrícolas/fisiología , Pradera , Suelo/química , Animales , Bovinos , Industria Lechera
4.
Ecol Appl ; 28(3): 694-708, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29284189

RESUMEN

Process-based models are increasingly used to study agroecosystem interactions and N2 O emissions from agricultural fields. The widespread use of these models to conduct research and inform policy benefits from periodic model comparisons that assess the state of agroecosystem modeling and indicate areas for model improvement. This work provides an evaluation of simulated N2 O flux from three process-based models: DayCent, DNDC, and EPIC. The models were calibrated and validated using data collected from two research sites over five years that represent cropping systems and nitrogen fertilizer management strategies common to dairy cropping systems. We also evaluated the use of a multi-model ensemble strategy, which inconsistently outperformed individual model estimations. Regression analysis indicated a cross-model bias to underestimate high magnitude daily and cumulative N2 O flux. Model estimations of observed soil temperature and water content did not sufficiently explain model underestimations, and we found significant variation in model estimates of heterotrophic respiration, denitrification, soil NH4+ , and soil NO3- , which may indicate that additional types of observed data are required to evaluate model performance and possible biases. Our results suggest a bias in the model estimation of N2 O flux from agroecosystems that limits the extension of models beyond calibration and as instruments of policy development. This highlights a growing need for the modeling and measurement communities to collaborate in the collection and analysis of the data necessary to improve models and coordinate future development.


Asunto(s)
Modelos Teóricos , Óxido Nitroso/análisis , Agricultura , Suelo/química
5.
J Environ Qual ; 45(2): 751-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27065424

RESUMEN

One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either be trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. Here, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass ( L.) and alfalfa ( L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies.


Asunto(s)
Óxido Nitroso/análisis , Biomasa , Productos Agrícolas , Panicum , Suelo/química
6.
J Environ Manage ; 153: 50-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25657061

RESUMEN

Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters.


Asunto(s)
Agua Dulce/análisis , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/prevención & control , Calidad del Agua , Agricultura , Wisconsin
7.
J Environ Qual ; 43(5): 1725-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25603258

RESUMEN

Nutrient losses from rice fields can have economic and environmental consequences. Little is known about nutrient losses in surface runoff waters from direct-seeded rice systems, which are common in the United States and increasingly more so in Asia. The objectives of this research were to quantify nutrient losses from California rice fields in surface runoff waters and to determine when and under what conditions losses are greatest. Research was conducted in 10 rice fields varying in residue (burned or incorporated) and water management over a 2-yr period. Concentrations of NH-N and NO-N in runoff water across sites, seasons, and management practices averaged <0.1 mg N L. Runoff water PO-P concentration averaged 0.14 mg L and was not affected by season or straw management practices. However, P fluxes were higher in the winter when rice straw was burned (2.59 kg ha) as opposed to incorporated (0.44 kg ha). Average seasonal runoff water K concentrations did not vary with season and straw management, although they were highest at the onset of the winter season. Average total suspended solids (TSS) concentrations did not vary by season but were highest during the winter in the straw-incorporated fields (46 mg L). Rice fields were sinks for K (4.9 kg K ha) during the growing season. Fields were not significant sources of nutrients or TSS during the growing season; however, during the winter fallow they could be sources of NH-N, P, K, and TSS, especially as water fluxes from fields increased.

8.
J Environ Qual ; 53(1): 12-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38054550

RESUMEN

Growing concerns about environmental impacts of dairy farms have driven producers to address greenhouse gas (GHG) emissions and nitrogen (N) losses from soil following land application of dairy manure. Tannin dietary additives have proved to be a successful intervention for mitigating GHG and ammonia (NH3 ) emissions at the barn scale. However, it is unknown how land application of dairy manure from cows fed tannin diets affects crop-soil nitrogen dynamics and soil GHG flux. To test this, cows were fed diets at three levels of tannins (0.0%, 0.4%, and 1.8% of dry matter intake) and their manure was field applied at two N rates (240 and 360 kg N ha-1 ). Soil NH4 + -N, NO3 - -N, corn silage yield, and soil GHG flux were then measured over a full growing season. Soils amended with tannin manure had lower initial NH4 + -N concentrations and lower total mineral N (NH4 + -N + NO3 - -N) concentrations 19 days after application, compared to soils amended with no tannin manures. Despite lower early season N availability in tannin-fertilized plots, there were no differences in corn silage yield. No differences in soil GHG and NH3 emissions were observed between manure-amended treatments. These results demonstrate that while tannin addition to dairy cow feed does not offer short-term GHG or NH3 emissions reductions after field manure application, it can promote slower soil N mineralization that may reduce reactive N loss after initial application.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Femenino , Bovinos , Animales , Estiércol , Taninos , Nitrógeno , Amoníaco/análisis
9.
J Environ Qual ; 40(4): 1229-40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21712592

RESUMEN

Artificial subsurface drainage in cropland creates pathways for nutrient movement into surface water; quantification of the relative impacts of common and theoretically improved management systems on these nutrient losses remains incomplete. This study was conducted to assess diverse management effects on long-term patterns (1998-2006) of NO, NH, and PO loads (). We monitored water flow and nutrient concentrations at subsurface drains in lysimeter plots planted to continuous corn ( L.) (CC), both phases of corn-soybean [ (L.) Merr.] rotations (corn, CS; soybean, SC), and restored prairie grass (PG). Corn plots were fertilized with preplant or sidedress urea-NHNO (UAN) or liquid swine manure injected in the fall (FM) or spring (SM). Restored PG reduced NO eightfold compared with fields receiving UAN (2.5 vs. 19.9 kg N ha yr; < 0.001), yet varying UAN application rates and timings did not affect NO across all CCUANs and CSUANs. The NO from CCFM (33.3 kg N ha yr) were substantially higher than for all other cropped fields including CCSM (average 19.8 kg N ha yr, < 0.001). With respect to NH and PO, only manured soils recorded high but episodic losses in certain years. Compared with the average of all other treatments, CCSM increased NH in the spring of 1999 (217 vs. 680 g N ha yr), while CCFM raised PO in the winter of 2005 (23 vs. 441 g P ha yr). Our results demonstrate that fall manuring increased nutrient losses in subsurface-drained cropland, and hence this practice should be redesigned for improvement or discouraged.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Fertilizantes/análisis , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Monitoreo del Ambiente , Indiana , Nitratos/análisis , Nitrógeno/análisis , Fosfatos/análisis , Poaceae , Compuestos de Amonio Cuaternario/análisis , Estaciones del Año , Glycine max , Zea mays
10.
J Environ Qual ; 39(1): 304-13, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20048318

RESUMEN

Water quality concerns have arisen related to rice (Oryza sativa L.) field drain water, which has the potential to contribute large amounts of dissolved organic carbon (DOC) and total dissolved solids (TDS) to the Sacramento River. Field-scale losses of DOC or TDS have yet to be quantified. The objectives of this study were to evaluate the seasonal concentrations of DOC and TDS in rice field drain water and irrigation canals, quantify seasonal fluxes and flow-weighted (FW) concentrations of DOC and TDS, and determine the main drivers of DOC and TDS fluxes. Two rice fields with different straw management practices (incorporation vs. burning) were monitored at each of four locations in the Sacramento Valley. Fluxes of DOC ranged from 3.7 to 34.6 kg ha(-1) during the growing season (GS) and from 0 to 202 kg ha(-1) during the winter season (WS). Straw management had a significant interaction effect with season, as the greatest DOC concentrations were observed during winter flooding of straw incorporated fields. Fluxes and concentrations of TDS were not significantly affected by either straw management or season. Total seasonal water flux accounted for 90 and 88% of the variability in DOC flux during the GS and WS, respectively. Peak DOC concentrations occurred at the onset of drainflow; therefore, changes in irrigation management may reduce peak DOC concentrations and thereby DOC losses. However, the timing of peak DOC concentrations from rice fields suggest that rice field drainage water is not the cause of peak DOC concentrations in the Sacramento River.


Asunto(s)
Carbono/química , Oryza/fisiología , Contaminantes Químicos del Agua/química , Agua/química , Agricultura , California , Carbono/metabolismo , Monitoreo del Ambiente , Estaciones del Año
11.
J Environ Qual ; 38(3): 1205-15, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19398518

RESUMEN

Artificial subsurface drainage is commonly used in midwestern agriculture and drainage losses of dissolved organic carbon (DOC) from such systems are an under-quantified portion of the terrestrial carbon (C) cycle. The objectives of this study were to determine the effect of common agricultural management practices on DOC losses from subsurface tile drains and to assess patterns of loss as a function of year, time of year, and drainflow. Daily drainflow was collected across six water years (1999-2004) from a restored prairie grass system and cropping systems which include continuous corn (Zea mays L.) and corn-soybean [Glycine max (L.) Merr.] rotations fertilized with urea-ammonium-nitrate (UAN) or swine (Sus scrofa) manure lagoon effluent. The DOC concentrations in tile drainflow were low, typically <2 mg L(-1). Yearly DOC losses, which ranged from 1.78 to 8.61 kg ha(-1), were not affected by management practices and were small compared to organic C inputs. Spring application of lagoon effluent increased yearly flow-weighted (FW)-DOC concentrations relative to other cropping systems in three of the years and increased monthly FW-DOC concentrations when drainflow occurred within 1 mo of application. Drainflow was significantly and positively correlated with DOC loss. Drainflow also affected DOC concentrations as greater 6-yr cumulative drainflow was associated with lower 6-yr FW-DOC concentrations and greater daily drainflow was associated with higher daily DOC concentrations. Our results indicate that lagoon effluent application and fertilizer N rates do not affect long-term losses of DOC from tile drains and that drainflow is the main driver of DOC losses.


Asunto(s)
Agricultura/métodos , Carbono/análisis , Compuestos Orgánicos/análisis , Suelo/análisis , Lluvia , Factores de Tiempo
12.
J Environ Qual ; 48(4): 966-977, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31589669

RESUMEN

Environmental conditions and management practices affect nutrient losses in surface runoff, but their relative impacts on phosphorus (P) loss during frozen and nonfrozen ground periods have not been well quantified. More specifically, the relative importance of manure application, tillage, and soil-test P (STP) has not been assessed at the field scale. In this study, we compiled a dataset composed of 125 site-years of data from 26 fields that were continually monitored for edge-of-field P loss during snowmelt and storm events. Regression tree analyses were performed to rank the level of influence each environmental and management factor had on nutrient loads. Dissolved P (DP) was the majority of the total P (TP) during frozen conditions, but a small portion of TP during nonfrozen conditions. Manure application had a greater influence on the flow-weighted mean concentrations (FWMCs) of TP and DP during frozen conditions than during nonfrozen conditions. No-till resulted in greater TP and DP FWMCs during frozen conditions than conventional tillage, whereas the opposite effect for TP FWMC was seen during nonfrozen conditions. However, regression tree analysis revealed that STP (0- to 5-cm depth) was the most important factor in predicting DP and TP FWMCs during frozen conditions and DP FWMC during nonfrozen conditions. Extremely high STP values were associated with late-frozen manure applications and grazed pastures. Reducing surface P loss in seasonally frozen landscapes will require prioritizing management strategies that avoid manure application through early- and late-frozen conditions and lead to a drawdown of STP, particularly in the top 5 cm.


Asunto(s)
Estiércol , Fósforo , Agricultura , Monitoreo del Ambiente , Lluvia , Movimientos del Agua
13.
J Vis Exp ; (90): e52110, 2014 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25146426

RESUMEN

Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.


Asunto(s)
Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Suelo/química , Agricultura , Cromatografía de Gases/métodos , Efecto Invernadero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA