Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144633

RESUMEN

The global marine environment is increasingly affected by human activities causing climate change, eutrophication, and pollution. These factors influence the metabolic mechanisms of phytoplankton species, such as diatoms. Among other pollutant agents, heavy metals can have dramatic effects on diatom viability. Detailed knowledge of the interaction of diatoms with metals is essential from both a fundamental and applicative point of view. To this aim, we assess terahertz time-domain spectroscopy as a tool for sensing the diatoms in aqueous systems which mimic their natural environment. Despite the strong absorption of terahertz radiation in water, we show that diatoms can be sensed by probing the water absorption enhancement in the terahertz range caused by the water-diatom interaction. We reveal that the addition of metal dopants affects this absorption enhancement, thus enabling the monitoring of the toxic effects of metals on diatoms using terahertz spectroscopy. We demonstrate that this technique can detect the detrimental effects of heavy metals earlier than conventional methods such as microscopy, enzymatic assays, and molecular analyses aimed at assessing the overexpression of genes involved in the heavy metal-stress response.


Asunto(s)
Diatomeas , Contaminantes Ambientales , Metales Pesados , Espectroscopía de Terahertz , Contaminantes Ambientales/metabolismo , Humanos , Metales Pesados/metabolismo , Agua/metabolismo
2.
Opt Express ; 26(16): 20225-20232, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30119335

RESUMEN

Simultaneous MIMO-free transmission of 12 orbital angular momentum (OAM) modes over a 1.2 km air-core fiber is demonstrated. WDM compatibility of the system is shown by using 60, 25 GHz spaced WDM channels with 10 GBaud QPSK signals. System performance is evaluated by measuring bit error rates, which are found to be below the soft FEC limit, and limited by inter-modal crosstalk. The crosstalk in the system is analyzed, and it is concluded that it can be significantly reduced with an improved multiplexer and de-multiplexer.

3.
Phys Rev Lett ; 117(23): 233903, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982639

RESUMEN

We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

4.
Materials (Basel) ; 16(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37374522

RESUMEN

As we approach the limits of semiconductor technology, the development of new materials and technologies for the new era in electronics is compelling. Among others, perovskite oxide hetero-structures are anticipated to be the best candidates. As in the case of semiconductors, the interface between two given materials can have, and often has, very different properties, compared to the corresponding bulk compounds. Perovskite oxides show spectacular interfacial properties due to the the rearrangement of charges, spins, orbitals and the lattice structure itself, at the interface. Lanthanum aluminate and Strontium titanate hetero-structures (LaAlO3/SrTiO3) can be regarded as a prototype of this wider class of interfaces. Both bulk compounds are plain and (relatively) simple wide-bandgap insulators. Despite this, a conductive two-dimensional electron gas (2DEG) is formed right at the interface when a LaAlO3 thickness of n≥4 unit cells is deposited on a SrTiO3 substrate. The 2DEG is quite thin, being confined in only one or at least very few mono-layers at the interface, on the SrTiO3 side. A very intense and long-lasting study was triggered by this surprising discovery. Many questions regarding the origin and characteristics of the two-dimensional electron gas have been (partially) addressed, others are still open. In particular, this includes the interfacial electronic band structure, the transverse plane spatial homogeneity of the samples and the ultrafast dynamics of the confined carriers. Among a very long list of experimental techniques which have been exploited to study these types of interfaces (ARPES, XPS, AFM, PFM, …and many others), optical Second Harmonic Generation (SHG) was found to be suitable for investigating these types of buried interfaces, thanks to its extreme and selective interface-only sensitivity. The SHG technique has made its contribution to the research in this field in a variety of different and important aspects. In this work we will give a bird's eye view of the currently available research on this topic and try to sketch out its future perspectives.

5.
J Phys Condens Matter ; 32(13): 135001, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31778975

RESUMEN

Oxide growth with semiconductor-like accuracy allows the fabrication of atomically precise thin films and interfaces displaying a wide range of phases and functionalities that are absent in the corresponding oxide bulk materials. Among the other properties it was found that a two-dimensional electronic gas is formed under some circumstances at the LaAlO3/SrTiO3(0 0 1) interface separating two typical insulating perovskite crystals. The origin of this conducting state has been discussed at length, since different doping mechanisms can act in these material systems. Many experimental results point to the so-called polar catastrophe scenario as the principal mechanism driving the formation of the two-dimensional electronic gas. According to this mechanism, the existence of an interfacial polar discontinuity is the key ingredient to drive an electronic reconstruction at the LaAlO3/SrTiO3(0 0 1) interface and the consequent formation of a two-dimensional electron gas. This simple picture has been often questioned by the existence of material systems whose interface are predicted being non-polar according to the simplistic 'ionic' limit but that display an electrical behavior analogous to that of LaAlO3/SrTiO3(0 0 1) interfaces. This is the case of the LaAlO3/SrTiO3(1 1 0), i.e., a LaAlO3/SrTiO3 interface with a different in-plane orientation. It is evident that to solve such kind of controversies a detailed investigation of the polar or non-polar state of these interfaces is needed, although this is not simple for the lack of experimental tools that are specifically sensitive to interfacial polarity. Here we apply Optical Second Harmonic Generation to investigate LaAlO3/SrTiO3 interfaces with different in-plane orientations to bridge this gap. By comparing our results with recent theoretical findings, we will arrive to the conclusion that the real LaAlO3/SrTiO3(1 1 0) interface is strongly polar.

6.
Materials (Basel) ; 12(23)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771196

RESUMEN

Recently we have demonstrated a new nonlinear optical effect in the THz interval of frequencies. The latter is based on the use of femtosecond optical pulses and intense, sub-ps, broadband terahertz (THz) pulses to generate a THz-optical four- and five-wave mixing in the investigated material. The spectrum of the generated signal is resolved in time and wavelength and displays two pronounced frequency sidebands, Stokes and anti-Stokes, close to the optical second harmonic central frequency 2 ω L , where ω L is the optical central frequency of the fundamental beam, thus resembling the spectrum of standard hyper-Raman scattering, and hence we named this effect 'THz hyper-Raman'-THYR. We applied this technique to several crystalline materials, including α-quartz and gallium selenide. In the first material, we find that the THYR technique brings spectroscopic information on a large variety of low-energy excitations that include polaritons and phonons far from the Γ-point, which are difficult to study with standard optical techniques. In the second example, we show that this new tool offers some advantages in detecting ultra-broadband THz pulses. In this paper we review these two recent results, showing the potentialities of this new THz technique.

7.
J Phys Chem B ; 122(12): 3133-3140, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29513017

RESUMEN

Ionic liquids are liquid salts at ambient temperature composed of organic cations and organic/inorganic anions. Outstanding physical and chemical properties of ionic liquids lead to increasing application in scientific and industrial field. Ionic liquids have been already investigated by different spectroscopic techniques, including terahertz (THz) time-domain spectroscopy. The usual THz frequency range extends up to 2-3 THz, a relatively narrow band, which can only show the intermolecular vibrational modes. Here, we report about broadband THz spectroscopy of ionic liquids up to 13 THz. Bandwidth of intermolecular absorption band presents an unexpected behavior and strong sharp intramolecular absorptions are shown. In addition, we found violation of the approximation of harmonic oscillator used to predict the peak shift of intermolecular absorption band.

8.
Sci Rep ; 8(1): 13613, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206245

RESUMEN

We present an investigation on ultrashort laser surface structuring with structured light fields generated by various q-plates. In particular, q-plates with topological charges q = 1, 3/2, 2, 5/2 are used to generate femtosecond (fs) vector vortex beams, and form complex periodic surface structures through multi-pulse ablation of a solid crystalline silicon target. We show how optical retardation tuning of the q-plate offers a feasible way to vary the fluence transverse distribution of the beam, thus allowing the production of structures with peculiar shapes, which depend on the value of q. The features of the generated surface structures are compared with the vector vortex beam characteristics at the focal plane, by rationalizing their relationship with the local state of the laser light. Our experimental findings demonstrate how irradiation with fs complex light beams can offer a valuable route to design unconventional surface structures.

9.
J Phys Chem B ; 121(30): 7351-7358, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28703580

RESUMEN

Ionic liquids are salts found in their liquid state at ambient temperature. The physicochemical properties of ionic liquids can be tailored by selecting constituent cation and anion from numerous available ions. The physicochemical properties can be further tuned by mixing different neat ionic liquids. Reported data of ionic liquid mixtures reveal that frequently investigated properties such as density, viscosity, and thermal stability follow corresponding mixing laws. Complex permittivity in the interval of terahertz frequencies is of great importance to understand the molecular interactions and the solvation dynamics which drive the macroscopic properties of ionic liquids; however, to the best of our knowledge, there are few reports about the mixing behavior of complex permittivity in ionic liquid mixtures. In this contribution, binary mixtures of 1-butyl-3-methylimidazoulium iodide ([C4C1im]I) and 1-butyl-3- methylimidazoulium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) are investigated in the terahertz spectral range, and the resulting low-energy spectra are analyzed in order to clarify the mixing laws at play. The results show that the complex permittivity of mixtures of [C4C1im]I and ([C4C1im][NTf2] obeys a linear mixing law.

10.
Sci Rep ; 7: 42142, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169342

RESUMEN

In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

11.
Sci Rep ; 5: 17929, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26658307

RESUMEN

Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields.

12.
Science ; 347(6225): 964-6, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25636796

RESUMEN

Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"­or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA