Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878725

RESUMEN

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Asunto(s)
Antiinfecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacología , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Antiinfecciosos/metabolismo , Microbiología del Suelo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39321260

RESUMEN

After having co-existed in plant genomes for at least 200 million years, the products of microRNA (miRNA) and Nucleotide-Binding Leucine Rich Repeat protein (NLR) genes formed a regulatory relationship in the common ancestor of modern gymnosperms and angiosperms. From then on, DNA polymorphisms occurring at miRNA target sequences within NLR transcripts must have been compensated by mutations in the corresponding mature miRNA sequence. The potential evolutionary advantage of such regulation remains largely unknown and might be related to two non-exclusive scenarios: miRNA-dependent regulation of NLR levels might prevent defense mis-activation with negative effects on plant growth and reproduction; or reduction of active miRNA levels in response to pathogen derived molecules (PAMPS and silencing suppressors) might rapidly release otherwise silent NLR transcripts for rapid translation and thereby enhance defense. Here, we used Arabidopsis thaliana plants deficient for miR472 function to study the impact of releasing its NLR targets on plant growth and reproduction and on defense against the fungal pathogen Plectospharaella cucumerina. We show that miR472 regulation has a dual role, participating both in the tight regulation of plant defense and growth. MIM472 lines, with reduced active miR472, are more resistant to pathogens and, correlatively, have reduced relative growth compared to wild-type plants although the end of their reproductive phase is delayed, exhibiting higher adult biomass and similar seed yield as the wild-type. Our study highlights how negative consequences of defense activation might be compensated by changes in phenology and that miR472 reduction is an integral part of plant defense responses.

3.
New Phytol ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985403

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.

4.
J Exp Bot ; 72(20): 7316-7334, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34329403

RESUMEN

Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente/genética , Pseudomonas syringae
6.
Mol Plant Microbe Interact ; 31(2): 249-259, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28990488

RESUMEN

MicroRNAs (miRNAs) are 21- to 24-nucleotide short noncoding RNAs that trigger gene silencing in eukaryotes. In plants, miRNAs play a crucial role in a wide range of developmental processes and adaptive responses to abiotic and biotic stresses. In this work, we investigated the role of miR773 in modulating resistance to infection by fungal pathogens in Arabidopsis thaliana. Interference with miR773 activity by target mimics (in MIM773 plants) and concomitant upregulation of the miR773 target gene METHYLTRANSFERASE 2 (MET2) increased resistance to infection by necrotrophic (Plectosphaerrella cucumerina) and hemibiotrophic (Fusarium oxysporum, Colletototrichum higginianum) fungal pathogens. By contrast, both MIR773 overexpression and MET2 silencing enhanced susceptibility to pathogen infection. Upon pathogen challenge, MIM773 plants accumulated higher levels of callose and reactive oxygen species than wild-type plants. Stronger induction of defense-gene expression was also observed in MIM773 plants in response to fungal infection. Expression analysis revealed an important reduction in miR773 accumulation in rosette leaves of plants upon elicitor perception and pathogen infection. Taken together, our results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression of miR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Hongos/inmunología , MicroARNs/metabolismo , Enfermedades de las Plantas/inmunología , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Silenciador del Gen , Enfermedades de las Plantas/microbiología
7.
Plant Physiol ; 170(4): 2146-58, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26858366

RESUMEN

The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum/crecimiento & desarrollo , Hordeum/genética , Semillas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Endospermo/genética , Germinación/genética , Modelos Biológicos , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Activación Transcripcional/genética , Técnicas del Sistema de Dos Híbridos
8.
PLoS Genet ; 9(3): e1003374, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555288

RESUMEN

The development of multicellular organisms relies on interconnected genetic programs that control progression through their life cycle. MicroRNAs (miRNAs) and transcription factors (TFs) play key roles in such regulatory circuits. Here, we describe how three evolutionary conserved miRNA-TF pairs interact to form multiple checkpoints during reproductive development of Arabidopsis thaliana. Genetic, cellular, and physiological experiments show that miR159- and miR319-regulated MYB and TCP transcription factors pattern the expression of miR167 family members and their ARF6/8 targets. Coordinated action of these miRNA-TF pairs is crucial for the execution of consecutive hormone-dependent transitions during flower maturation. Cross-regulation includes both cis- and trans-regulatory interactions between these miRNAs and their targets. Our observations reveal how different miRNA-TF pairs can be organized into modules that coordinate successive steps in the plant life cycle.


Asunto(s)
Arabidopsis , Flores , MicroARNs/genética , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Nat Genet ; 39(8): 1033-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643101

RESUMEN

MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Proteínas de Plantas/genética , ARN de Planta/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Arabidopsis/metabolismo , Imitación Molecular , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo
10.
Genome Res ; 22(1): 163-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21940835

RESUMEN

Small non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing, stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs (miRNAs) constitute a class of small ncRNAs that are particularly important for development. Of the 243 known miRNAs, 133 were found to be expressed in the root, and most showed tissue- or zone-specific expression patterns. We identified 66 new high-confidence miRNAs using a computational pipeline, PIPmiR, specifically developed for the identification of plant miRNAs. PIPmiR uses a probabilistic model that combines RNA structure and expression information to identify miRNAs with high precision. Knockdown of three of the newly identified miRNAs results in altered root growth phenotypes, confirming that novel miRNAs predicted by PIPmiR have functional relevance.


Asunto(s)
Arabidopsis/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/biosíntesis , Modelos Biológicos , ARN de Planta/biosíntesis , MicroARNs/genética , Especificidad de Órganos/fisiología , ARN de Planta/genética
11.
Plant Physiol ; 164(1): 384-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24285850

RESUMEN

Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.


Asunto(s)
Arabidopsis/fisiología , Interacciones Huésped-Parásitos , Tetranychidae/fisiología , Animales , Arabidopsis/genética , Ciclopentanos/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Glucosinolatos/metabolismo , Herbivoria , Larva , Mutación , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Tetranychidae/genética
12.
Plant Physiol ; 161(2): 805-12, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204429

RESUMEN

MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , N-Metiltransferasa de Histona-Lisina/genética , MicroARNs/genética , Interferencia de ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/metabolismo , MicroARNs/clasificación , MicroARNs/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico
13.
Trends Plant Sci ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38811245

RESUMEN

Within the continuous tug-of-war between plants and microbes, RNA silencing stands out as a key battleground. Pathogens, in their quest to colonize host plants, have evolved a diverse arsenal of silencing suppressors as a common strategy to undermine the host's RNA silencing-based defenses. When RNA silencing malfunctions in the host, genes that are usually targeted and silenced by microRNAs (miRNAs) become active and can contribute to the reprogramming of host cells, providing an additional defense mechanism. A growing body of evidence suggests that miRNAs may act as intracellular sensors to enable a rapid response to pathogen threats. Herein we review how plant miRNA targets play a crucial role in immune responses against different pathogens.

14.
Nat Commun ; 15(1): 8326, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333479

RESUMEN

After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.


Asunto(s)
Marchantia , Nicotiana , Enfermedades de las Plantas , Virus del Mosaico del Tabaco , Marchantia/genética , Marchantia/virología , Enfermedades de las Plantas/virología , Virus del Mosaico del Tabaco/fisiología , Nicotiana/virología , Inmunidad de la Planta/genética , Interacciones Huésped-Patógeno/inmunología , Regulación de la Expresión Génica de las Plantas , Viroma/genética , Virus de Plantas/fisiología , Virus de Plantas/genética
15.
PLoS Genet ; 6(7): e1001031, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20661442

RESUMEN

Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for approximately 20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA-resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants.


Asunto(s)
Arabidopsis/genética , MicroARNs/fisiología , Imitación Molecular , ARN de Planta/genética , Sondas Moleculares , Proyectos de Investigación
16.
Curr Biol ; 33(17): R902-R904, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699346

RESUMEN

Plants and microorganisms have a long-standing relationship involving mutual and continuous adaptations. A new study shows that several molecular tools plants use to recognize their pathogens were already present when plants colonized the land.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Patógeno , Plantas , Plantas/microbiología
17.
Plant J ; 66(5): 863-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21401744

RESUMEN

MicroRNAs play a key role in the control of plant development and response to adverse environmental conditions. For example, microRNA395 (miR395), which targets three out of four isoforms of ATP sulfurylase, the first enzyme of sulfate assimilation, as well as a low-affinity sulfate transporter, SULTR2;1, is strongly induced by sulfate deficiency. However, other components of sulfate assimilation are induced by sulfate starvation, so that the role of miR395 is counterintuitive. Here, we describe the regulation of miR395 and its targets by sulfate starvation. We show that miR395 is important for the increased translocation of sulfate to the shoots during sulfate starvation. MiR395 together with the SULFUR LIMITATION 1 transcription factor maintain optimal levels of ATP sulfurylase transcripts to enable increased flux through the sulfate assimilation pathway in sulfate-deficient plants. Reduced expression of ATP sulfurylase (ATPS) alone affects both sulfate translocation and flux, but SULTR2;1 is important for the full rate of sulfate translocation to the shoots. Thus, miR395 is an integral part of the regulatory circuit controlling plant sulfate assimilation with a complex mechanism of action.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Sulfatos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , MicroARNs/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Sulfato Adenililtransferasa/metabolismo
18.
Methods Mol Biol ; 1932: 239-245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701505

RESUMEN

A decade ago the discovery of the target mimicry regulatory process on the activity of a mature microRNA (miRNA) enabled for the first time the customized attenuation of miRNA activity in plants. That powerful technology was named MIMIC and was based on engineering the IPS1 long noncoding transcript to become complementary to the miRNA under study. In order to avoid IPS1 degradation, the predicted miRNA-mediated cleavage site was interrupted by three additional nucleotides giving rise to the so-called MIMIC decoy. Since then, MIMIC technology has been used in several plant species and in basic and translational research. We here provide a detailed guide to produce custom-designed MIMIC decoys to facilitate the study of sRNA functions in plants.


Asunto(s)
MicroARNs/genética , ARN de Planta/genética , Tecnología/métodos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Nucleótidos/genética
19.
PLoS One ; 13(2): e0192984, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29451902

RESUMEN

Development and fitness of any organism rely on properly controlled gene expression. This is especially true for plants, as their development is determined by both internal and external cues. MicroRNAs (miRNAs) are embedded in the genetic cascades that integrate and translate those cues into developmental programs. miRNAs negatively regulate their target genes mainly post-transcriptionally through two co-existing mechanisms; mRNA cleavage and translational inhibition. Despite our increasing knowledge about the genetic and biochemical processes involved in those concurrent mechanisms, little is known about their relative contributions to the overall miRNA-mediated regulation. Here we show that co-existence of cleavage and translational inhibition is dependent on growth temperature and developmental stage. We found that efficiency of an artificial miRNA-mediated (amiRNA) gene silencing declines with age during vegetative development in a temperature-dependent manner. That decline is mainly due to a reduction on the contribution from translational inhibition. Both, temperature and developmental stage were also found to affect mature amiRNA accumulation and the expression patterns of the core players involved in miRNA biogenesis and action. Therefore, that suggests that each miRNA family specifically regulates their respective targets, while temperature and growth might influence the performance of miRNA-dependent regulation in a more general way.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , MicroARNs/genética , Biosíntesis de Proteínas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ambiente , Desarrollo de la Planta , ARN de Planta
20.
Sci Rep ; 7: 44898, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28332603

RESUMEN

MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , MicroARNs/genética , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Hongos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA