Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Sport Nutr Exerc Metab ; 34(3): 145-153, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330938

RESUMEN

This study sought to investigate the effect of cold ambient temperature on subcutaneous abdominal adipose tissue (SCAAT) lipolysis and blood flow during steady-state endurance exercise in endurance-trained cyclists. Ten males (age: 23 ± 3 years; peak oxygen consumption: 60.60 ± 4.84 ml·kg-1·min-1; body fat: 18.4% ± 3.5%) participated in baseline lactate threshold (LT) and peak oxygen consumption testing, two familiarization trials, and two experimental trials. Experimental trials consisted of cycling in COLD (3 °C; 42% relative humidity) and neutral (NEU; 19 °C; 39% relative humidity) temperatures. Exercise consisted of 25 min cycling at 70% LT and 25 min at 90% LT. In situ SCAAT lipolysis and blood flow were measured via microdialysis. Heart rate, core temperature, carbohydrate and fat oxidation, blood glucose, and blood lactate were also measured. Heart rate, core temperature, oxygen consumption, and blood lactate increased with exercise but were not different between COLD and NEU. SCAAT blood flow did not change from rest to exercise or between COLD and NEU. Interstitial glycerol increased during exercise (p < .001) with no difference between COLD and NEU. Fat oxidation increased (p < .001) at the onset of exercise and remained elevated thereafter with no difference between COLD and NEU. Carbohydrate oxidation increased with increasing exercise intensity and was greater at 70% LT in COLD compared to NEU (p = .030). No differences were observed between conditions for any other variable. Cycling exercise increased SCAAT lipolysis but not blood flow. Ambient temperature did not alter SCAAT metabolism, SCAAT blood flow, or fat oxidation in well-trained cyclists, though cold exposure increased whole-body carbohydrate oxidation at lower exercise intensities.


Asunto(s)
Tejido Adiposo , Lipólisis , Masculino , Humanos , Adulto Joven , Adulto , Lipólisis/fisiología , Temperatura , Tejido Adiposo/metabolismo , Glucemia/metabolismo , Grasa Abdominal/metabolismo , Lactatos/metabolismo , Consumo de Oxígeno/fisiología , Glicerol , Frío
2.
Wilderness Environ Med ; 34(3): 341-345, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37301628

RESUMEN

INTRODUCTION: We have previously described negative energy balance (ie, -9.7±3.4 MJ/d) and weight loss (Δ-1.5 ± 0.7 kg) influenced by high levels of energy expenditure (ie, 17.4±2.6 MJ/d) during remote expeditionary hunting in Alaska. Despite negative energy balance, participants retained skeletal muscle. The purpose of this pilot study was to measure skeletal muscle protein synthesis and examine molecular markers of skeletal muscle protein metabolism under similar conditions of physical and nutrient stress. METHODS: The "virtual biopsy method" was used to evaluate integrated fractional synthetic rates (FSRs) of muscle protein from blood samples in 4 participants. Muscle biopsies were taken to measure molecular markers of muscle protein kinetics (ie, FSTL1, MEF2, MYOD1, B2M, and miR-1-3p, -206, -208b, 23a, and 499a) using real-time polymerase chain reaction. RESULTS: Our findings in 4 participants (2 females [28 and 62 y of age; 66.2 and 71.8 kg body weight; 25.5 and 26.7 kg/m2 body mass index] and 2 males [47 and 56 y of age; 87.5 and 91.4 kg body weight; 26.1 and 28.3 kg/m2 body mass index]) describe mean muscle FSRs of serum carbonic anhydrase (2.4%) and creatine kinase M-type (4.0%) and positive increments in molecular regulation. CONCLUSIONS: Preservation of skeletal muscle under conditions of physical and nutrient stress seems to be supported by positive inflection of skeletal muscle FSR and molecular activation.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Proteínas Musculares , Masculino , Femenino , Humanos , Proteínas Musculares/metabolismo , Alaska , Caza , Proyectos Piloto , Músculo Esquelético , Peso Corporal , Metabolismo Energético , Proteínas Relacionadas con la Folistatina/metabolismo
3.
J Sports Sci ; 39(12): 1356-1365, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33423613

RESUMEN

Hypobaria and hypoxia exert independent effects on oxidative stress during exercise, while combined effectson the post-exercise recovery period remain unclear.Accordingly, this study examined the recovery period during lab-simulated hypoxic and hypobaric conditions following exercise-induced oxidative stress. Participants (n=13) performed 60-minutes of cycling (70% watts max) in a normobaric normoxic environment followed by a four-hour recovery under three conditions; 1000m normobaric normoxia (NN, 675mmHg), 4400m normobaric hypoxia (NH, 675mmHg), or 4400m hypobaric hypoxia (HH, 440mmHg). Blood samples collected at Pre, Post, 2-Hours (2-HR), and 4-Hours (4-HR) post-exercise were analyzed fora potential increase in biochemical modifications of proteins(protein carbonyls, PC; 3-nitrotyrosines, 3NT) lipids (lipid hydroperoxides, LOOH; 8-isoprostanes, 8-ISO), and antioxidant capacity (FRAP, TEAC). Gene transcripts (EPAS, HMOX1, SOD2, NFE2L2) were quantified by qRT-PCR from muscle biopsies taken Pre and Post exercise. Hypoxia and hypobaria had no effect throughout recovery. Post-exercise TEAC (p=0.041), FRAP (p=0.013), and 8-ISO (p=0.044) increased, while PC (p=0.002) and 3-NT (p=0.032) were decreased. LOOH was lower in Post (p=0.018) NH trial samples. Exercise-dependent increases occurred in NFE2L2 (p=0.003), HMXO1 (p<0.001), SOD2 (p=0.046), and EPAS (p=0.038). Exercise recovery under conditions of NH and HH did not impact blood oxidative stress or redox-sensitive gene transcripts.


Asunto(s)
Presión Atmosférica , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Estrés Oxidativo , Oxígeno/sangre , Adolescente , Adulto , Altitud , Antioxidantes/metabolismo , Biomarcadores/sangre , Femenino , Perfilación de la Expresión Génica , Frecuencia Cardíaca , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Joven
4.
Wilderness Environ Med ; 32(2): 149-159, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34053883

RESUMEN

INTRODUCTION: The purpose of this study was to evaluate heat stress occurring in wildfire management activities with variable environmental conditions. METHODS: Direct observation and real-time wireless physiological monitoring allowed for weather and physiological metrics, including heart rate, core temperature (Tc), skin temperature, and physiological strain index (PSI), of male (n=193) and female (n=28) wildland firefighters (WLFFs) to be recorded during wildfire management activities. Accelerometry data were used to categorize intensity level of activity. RESULTS: Ambient temperature and relative humidity values were used to compute the heat index (HI; n=3891 h) and divided into quartiles (Q1: 13.3-25.1°C; Q2: 25.2-26.4°C; Q3: 26.5-28.9°C; Q4: 29.0-49.1°C). Activity levels remained relatively constant across all HI quartiles. The percentage of time spent performing moderate/vigorous activities was lowest during the hotter Q4 (Q1: 3%; Q2: 2%; Q3: 2%; Q4: 1%). Heart rate, Tc, PSI, and skin temperature associations with HI varied by resource type. Sixty-one percent of WLFFs (n=134) experienced a Tc ≥38.0°C, and 50% of WLFFs (n=111) experienced a PSI ≥6.0. CONCLUSIONS: Heat stress was prevalent as WLFFs performed job tasks of varying intensities in all ambient conditions. Spontaneous bouts of arduous labor, duration of work shifts, and other occupation characteristics present the possibility for substantial durations of hyperthermia, although no heat-related injuries occurred in this study. Despite chronic exposure to rugged sloped terrain, load carriage, and environmental conditions, self-regulation and individual attention to managing work:rest appears to be the primary management strategy in mitigating excessive accumulation of body heat in this occupation.


Asunto(s)
Bomberos , Trastornos de Estrés por Calor , Temperatura Corporal , Femenino , Frecuencia Cardíaca , Trastornos de Estrés por Calor/epidemiología , Respuesta al Choque Térmico , Calor , Humanos , Masculino
5.
Wilderness Environ Med ; 32(1): 27-35, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33431304

RESUMEN

INTRODUCTION: Wildfire suppression is characterized by high total energy expenditure and water turnover rates. Hydration position stands outline hourly fluid intake rates. However, dose interval remains ambiguous. We aimed to determine the effects of microdosing and bolus-dosing water and microdosing and bolus-dosing carbohydrate-electrolyte solutions on fluid balance, heat stress (physiologic strain index [PSI]), and carbohydrate oxidation during extended thermal exercise. METHODS: In a repeated-measures cross-over design, subjects completed four 120-min treadmill trials (1.3 m·s-1, 5% grade, 33°C, 30% relative humidity) wearing a US Forest Service wildland firefighter uniform and a 15-kg pack. Fluid delivery approximated losses calculated from a pre-experiment familiarization trial, providing 22 doses·h-1 or 1 dose·h-1 (46±11, 1005±245 mL·dose-1). Body weight (pre- and postexercise) and urine volume (pre-, during, and postexercise) were recorded. Heart rate, rectal temperature, skin temperature, and steady-state expired air samples were recorded throughout exercise. Statistical significance (P<0.05) was determined via repeated-measures analysis of variance. RESULTS: Total body weight loss (n=11, -0.6±0.3 kg, P>0.05) and cumulative urine output (n=11, 677±440 mL, P>0.05) were not different across trials. The micro-dosed carbohydrate-electrolyte trial sweat rate was lower than that of the bolus-dosed carbohydrate-electrolyte, bolus-dosed water, and microdosed water trials (n=11, 0.8±0.2, 0.9±0.2, 0.9±0.2, 0.9±0.2 L·h-1, respectively; P<0.05). PSI was lower at 60 than 120 min (n=12, 3.6±0.7 and 4.5±0.9, respectively; P<0.05), with no differences across trials. The carbohydrate-electrolyte trial's carbohydrate oxidation was higher than water trial's (n=12, 1.5±0.3 and 0.8±0.2 g·min-1, respectively; P<0.05), with no dosing style differences. CONCLUSIONS: Equal-volume diverse fluid delivery schedules did not affect fluid balance, PSI, or carbohydrate oxidation during extended thermal work.


Asunto(s)
Ingestión de Líquidos , Ejercicio Físico , Respuesta al Choque Térmico , Equilibrio Hidroelectrolítico , Agua , Adulto , Temperatura Corporal , Metabolismo de los Hidratos de Carbono , Estudios Cruzados , Fluidoterapia , Calor , Humanos
6.
Wilderness Environ Med ; 31(2): 188-196, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32359881

RESUMEN

INTRODUCTION: Wildland firefighters (WLFF) work long hours in extreme environments, resulting in high daily total energy expenditure. Increasing work-shift eating episodes and/or providing rations that promote convenient eating has shown augmented self-selected work output, as has regular carbohydrate (CHO) consumption. It remains unclear how current WLFF feeding strategies compare to more frequent nutrient delivery. Our aim was to determine WLFFs' self-selected field total energy intake (TEI), composition, and feeding patterns during wildland fire suppression shifts. METHODS: WLFF were deployed to fire incidents across the United States throughout the 2018 fire season. Preshift food inventories collected at basecamp provided item-specific nutrient content (kilocalories, CHO, fat, protein). Work shift consumption (TEI, feeding frequency, episodic composition) was monitored in real time by field researchers on fireline via observational data capture using mobile tablets. Shift work output was also quantified via actigraph accelerometry. RESULTS: Eighty-six WLFF (27.5±6.4 y; 16 female, 70 male) worked 14.0±1.1 h shifts, with a TEI of 6.3±2.5 MJ (1494±592 kcal) (51±10, 37±9, 13±4% for CHO, fat, and protein, respectively). WLFF averaged 4.3±1.6 eating episodes (1.4±1.3 MJ [345±306 kcal] and 44±38 g CHO·episode-1). WLFF who consumed >20 kcal·kg-1 averaged less sedentary activity than those consuming <16 kcal·kg-1. Data are presented as mean±SD. CONCLUSIONS: Not including fire camp meals (breakfast, dinner), the present work-shift TEI approximates 33% of previously determined WLFF total energy expenditure and demonstrates that current WLFF consumption patterns may not deliver adequate nutrients for occupational demands.


Asunto(s)
Ingestión de Energía , Bomberos/estadística & datos numéricos , Nutrientes , Estado Nutricional , Adulto , Femenino , Humanos , Masculino , Estados Unidos , Incendios Forestales , Adulto Joven
7.
J Therm Biol ; 78: 227-234, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30509641

RESUMEN

Heat acclimation lowers physiological strain when exercising in the heat, and may be enhanced by promoting dehydration during acclimation. The purpose was to compare fluid intake during heat acclimation by promoting dehydration (DEH=0.5 mL kg-1 15 min-1, ~2.4% dehydration per acclimation session) compared to euhydration (EUH=2.0 mL kg-1 15 min-1, ~1.4% dehydration per acclimation session) following four heat acclimation bouts on thermal strain, and exercise performance. Thirteen males completed 90 min heat stress tests (HST) at 50% VO2max (40 °C, 30%RH) before and after three 90 min heat acclimation trials, involving consecutive bouts with 4-fold less fluid (DEH) or EUH. DEH and EUH trials were separated by 48 h and assigned in a random crossover design separated by a 5 week washout. Wildland firefighter (WLFF) Nomex: shirt, pants, and a cotton T-shirt baselayer were worn. Peak core temperature (Tc) from the HST significantly decreased following both DEH (39.5 ±â€¯0.1-39.0 ±â€¯0.1 °C: P < 0.001) and EUH acclimation (39.5 ±â€¯0.1-38.9 ±â€¯0.1 °C: P < 0.001). HR, RPE, physiological strain index (PSI), and total work (J) completed in a graded exercise test to exhaustion were improved (P < 0.001) in effect for acclimation, but not different when comparing DEH or EUH fluid delivery. SBF was unchanged (P = 0.313). Sweat rate increased greater following DEH (1.52 ±â€¯0.06-1.89 ±â€¯0.09 L h-1) compared to EUH acclimation (1.57 ±â€¯0.06-1.79 ±â€¯0.08 L h-1: P = 0.015). Resting plasma volume increased in effect for acclimation (P = 0.002). Aldosterone decreased in effect for acclimation (P < 0.001) at rest and following exercise, and total protein was unaffected (P = 0.83). In conclusion, short-term heat acclimation (~360 min) attenuates heat stress, and improves exercise capacity in the heat, and was not impaired nor improved by promoting DEH during acclimation.


Asunto(s)
Aclimatación , Deshidratación/fisiopatología , Trastornos de Estrés por Calor/fisiopatología , Volumen Plasmático , Temperatura Corporal , Ingestión de Líquidos , Humanos , Masculino , Distribución Aleatoria , Adulto Joven
8.
Wilderness Environ Med ; 29(3): 304-314, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29887347

RESUMEN

INTRODUCTION: The objective of this study was to document characteristics of hiking during wildland firefighter (WLFF) training and wildfire suppression. For the first time, the overall physical demands during wildland firefighting were evaluated in the field using global positioning systems coupled with wireless physiological monitoring and load carriage prediction models. METHODS: Male (n=116) and female (n=15) interagency hotshot crew and type II WLFFs on wildfires volunteered for this direct observation study. Participants' heart rate, internal temperature, speed, and elevation gain were monitored throughout training and during wildfire suppression. The Pandolf and Santee equations were used to predict metabolic rate to estimate oxygen consumption of uphill and downhill hiking. RESULTS: Equipment weight varied by crew type (type II: 24±9 kg and interagency hotshot crew: 28±6 kg; P<0.05). Grade of terrain was steepest during training hikes, and ingress hikes were statistically different from egress and training hikes (ingress: 4±9%, shift: 4±9%, egress: 1±8%, training hikes: 10±9%; P<0.01). Estimated oxygen consumption was highest during ingress hikes and was significantly different from all other hike types on fire assignments (ingress: 22±12, shift: 19±12, egress: 19±12 mL·kg-1·min-1; P=0.01). Oxygen consumption was higher during training hikes (34±14 mL·kg-1·min-1) than during job-related hikes (P<0.01). CONCLUSIONS: The greatest metabolic demand during wildfire assignments occurred during ingress hikes. On average, this was close to the estimated metabolic demand of the job qualification arduous pack test. However, greater metabolic demand occurred for periods during both shift (on the job) and training hikes. These data quantify the demands associated with actual wildland performance of WLFFs and can help define future work capacity testing and training procedures.


Asunto(s)
Bomberos , Esfuerzo Físico/fisiología , Caminata/fisiología , Adulto , Femenino , Sistemas de Información Geográfica , Frecuencia Cardíaca/fisiología , Humanos , Elevación , Masculino , Metabolismo/fisiología , Consumo de Oxígeno/fisiología , Estados Unidos , Vida Silvestre , Adulto Joven
9.
Wilderness Environ Med ; 27(3): 386-92, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27591709

RESUMEN

OBJECTIVE: This study aimed to determine the physiological and thermoregulatory responses of individuals exercising in the heat (US military red flag conditions, wet-bulb globe temperature 31.5-32.2ºC) while consuming varied volumes of ambient temperature water and ice slurry. METHODS: Participants (N = 12) walked on a treadmill for 3 hours at approximately 40% peak aerobic capacity in a hot environment while consuming ambient temperature (35.5°C) water (W), ice slurry (0°C, two-thirds shaved ice and one-third water) at a ratio of 2 g·kg(-1) body mass every 10 minutes (FS), and reduced volume ice slurry as described at a rate of 1 g·kg(-1) body mass every 10 minutes (HS). Trials were completed at least 14 days apart, in a randomized, repeated measures design. RESULTS: Percent body weight loss was higher during the HS trial (1.8 ± 0.01%) compared with FS (0.5 ± 0.01%; P < .001) and W (0.6 ± 0.01%; P < .001). Mean rectal temperature at 3 hours was lower during FS (37.8 ± 0.7°C) compared with HS (38.1 ± 0.8°C) and W (38.2 ± 0.8°C) (P = .04 vs HS, and P = .005 vs W, main effect for trial). No differences were found in rectal temperature between HS and W. Heart rate was lower at the end of the third hour during FS (141 ± 10 beats/min) compared with HS (157 ± 19 beats/min) and W (154 ± 18 beats/min) (P = .001 and P = .007, respectively, time × trial interaction). There were no differences in heart rate between HS and W. CONCLUSIONS: The temperature of consumed fluids may be as important as the volume for the management of thermoregulation and other physiological responses for extended work in hot environments.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Bebidas , Temperatura Corporal/fisiología , Peso Corporal , Ingestión de Líquidos , Electrólitos/sangre , Prueba de Esfuerzo , Tolerancia al Ejercicio , Frecuencia Cardíaca , Calor , Humanos , Hielo , Masculino , Volumen Plasmático , Temperatura Cutánea , Sudoración
10.
J Sports Sci ; 33(16): 1692-701, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25620316

RESUMEN

The purpose of this study was to determine the effects of repeated bouts of long-duration endurance exercise on both muscle and urinary levels of oxidative DNA damage in moderately trained individuals. Seven moderately trained male cyclists participated in this study. All participants repeated two sessions consisting of a 5-h cycling period (equivalent to approximately 52%[Formula: see text]O2peak) followed by a 15-h rest, then a 40-km time trial. During the sessions, participants were instructed to take water ad libitum and to consume a standard sports drink consisting of 0.12 g·kg(-1) body weight·hr(-1) of carbohydrates. For each session, 24 h urine output was collected on the day before the 5-h exercise, and also between the 5-h exercise and 40-km time trial, in addition to between days 1-5 post-exercise. Subsequently, muscle and urinary levels of 8-hydroxy-2'- deoxyguanosine (8-OHdG) were determined using high performance liquid chromatography with electrochemical detection. No significant alterations were observed between two sessions at the muscle or urinary levels of 8-OHdG. These results suggest that repeated bouts of exercise with a 7-day washout period may not lead to an accumulation of DNA damage products after a second 5-h stationary cycling bout.


Asunto(s)
Desoxiguanosina/análogos & derivados , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Resistencia Física/fisiología , 8-Hidroxi-2'-Desoxicoguanosina , Adulto , Apoptosis , Ciclismo/fisiología , Daño del ADN , Desoxiguanosina/metabolismo , Desoxiguanosina/orina , Humanos , Masculino , Estrés Oxidativo/fisiología , Adulto Joven
11.
Int J Sport Nutr Exerc Metab ; 25(5): 448-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25811308

RESUMEN

A variety of dietary choices are marketed to enhance glycogen recovery after physical activity. Past research informs recommendations regarding the timing, dose, and nutrient compositions to facilitate glycogen recovery. This study examined the effects of isoenergetic sport supplements (SS) vs. fast food (FF) on glycogen recovery and exercise performance. Eleven males completed two experimental trials in a randomized, counterbalanced order. Each trial included a 90-min glycogen depletion ride followed by a 4-hr recovery period. Absolute amounts of macronutrients (1.54 ± 0.27 g·kg-1 carbohydrate, 0.24 ± 0.04 g·kg fat-1, and 0.18 ±0.03g·kg protein-1) as either SS or FF were provided at 0 and 2 hr. Muscle biopsies were collected from the vastus lateralis at 0 and 4 hr post exercise. Blood samples were analyzed at 0, 30, 60, 120, 150, 180, and 240 min post exercise for insulin and glucose, with blood lipids analyzed at 0 and 240 min. A 20k time-trial (TT) was completed following the final muscle biopsy. There were no differences in the blood glucose and insulin responses. Similarly, rates of glycogen recovery were not different across the diets (6.9 ± 1.7 and 7.9 ± 2.4 mmol·kg wet weight- 1·hr-1 for SS and FF, respectively). There was also no difference across the diets for TT performance (34.1 ± 1.8 and 34.3 ± 1.7 min for SS and FF, respectively. These data indicate that short-term food options to initiate glycogen resynthesis can include dietary options not typically marketed as sports nutrition products such as fast food menu items.


Asunto(s)
Rendimiento Atlético/fisiología , Suplementos Dietéticos , Comida Rápida , Glucógeno/metabolismo , Fenómenos Fisiológicos en la Nutrición Deportiva/fisiología , Adulto , Ciclismo , Glucemia/metabolismo , Estudios Cruzados , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Prueba de Esfuerzo , Voluntarios Sanos , Humanos , Insulina/sangre , Masculino , Músculo Cuádriceps/metabolismo , Factores de Tiempo
12.
J Strength Cond Res ; 29(2): 379-85, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25463693

RESUMEN

The purpose of this study was to investigate the effects of pneumatic compression pants on postexercise glycogen resynthesis. Active male subjects (n = 10) completed 2 trials consisting of a 90-minute glycogen depleting ride, followed by 4 hours of recovery with either a pneumatic compression device (PCD) or passive recovery (PR) in a random counterbalanced order. A carbohydrate beverage (1.8 g·kg bodyweight) was provided at 0 and 2 hours after exercise. Muscle biopsies (vastus lateralis) were obtained immediately and 4 hours after exercise for glycogen analyses. Blood samples were collected throughout recovery to measure glucose and insulin. Eight fingerstick blood samples for lactate were collected in the last 20 minutes of the exercise period and during the initial portion of the recovery period. Heart rate was monitored throughout the trial. During the PCD trial, subjects recovered using a commercially available recovery device (NormaTec PCD) operational at 0-60 and 120-180 minutes into recovery period. The same PCD was worn during the PR trial but was not turned on to create pulsatile pressures. There was no difference in muscle glycogen resynthesis during the recovery period (6.9 ± 0.8 and 6.9 ± 0.5 mmol·kg wet wt·h for the PR and PCD trials, respectively). Blood glucose, insulin, and lactate concentrations changed with respect to time but were not different between trials (p > 0.05). The use of PCD did not alter the rate of muscle glycogen resynthesis, blood lactate, or blood glucose and insulin concentrations associated with a postexercise oral glucose load.


Asunto(s)
Ciclismo/fisiología , Vendajes de Compresión , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Glucemia/análisis , Estudios Cruzados , Frecuencia Cardíaca , Humanos , Insulina/sangre , Ácido Láctico/sangre , Masculino , Adulto Joven
13.
Wilderness Environ Med ; 26(2): 221-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25772825

RESUMEN

OBJECTIVE: The purpose of this investigation was to characterize the effects of self-selected work activity on energy expenditure, water turnover, and thermal strain during wildland fire suppression. A secondary aim was to contrast current data with data collected 15 years ago using similar methods to determine whether job demands have changed. METHODS: Participants (n=15, 26±3 years, 179±6 cm, 78.3±8.6 kg) were monitored for 3 days for total energy expenditure, water turnover, core and chest skin temperature, physical activity, and heart rate. Participants arrived to the mobile laboratory each morning, submitted a nude weight, ingested a temperature transmitter, provided a urine sample, and were equipped with a physiological and activity monitor. Participants completed live wildland fire suppression during their work shifts. RESULTS: Mean core temperature was 37.6°±0.2°C, mean chest skin temperature was 34.1°±1.0°C, mean heart rate was 112±13 beats/min, and the mean physiological strain index score was 3.3±1.0. Wildland firefighters spent 49±8%, 39±6%, and 12±2% in the sedentary, light, and moderate-vigorous intensity categories, respectively. The mean total energy expenditure was 19.1±3.9 MJ/d, similar to 1997 (17.5±6.9 MJ/d). The mean water turnover in 2012 was 9.5±1.7 L/d, which was higher (P<.05) compared with 1997-98 (7.0±1.7 L/d). CONCLUSIONS: Wildland firefighters do not induce consistently high cardiovascular and thermal strain while completing arduous work in a hot environment despite fairly high chest skin temperatures. The total energy expenditure in the current study suggests job demands are similar to those of 15 years ago, while the increased water turnover may reflect a change in drinking habits.


Asunto(s)
Metabolismo Energético/fisiología , Bomberos , Esfuerzo Físico/fisiología , Vida Silvestre , Adulto , Temperatura Corporal , Peso Corporal , Femenino , Frecuencia Cardíaca , Calor , Humanos , Masculino , Exposición Profesional , Estrés Fisiológico/fisiología , Adulto Joven
14.
Wilderness Environ Med ; 26(3): 335-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25937547

RESUMEN

OBJECTIVE: The purpose of this study was to compare glucose and insulin responses during an oral glucose tolerance test (OGTT) in cold (C), neutral (N), and hot (H) environments. METHODS: Eleven males completed three 4-hour climate-controlled OGTT trials (C, 7.2°C; N, 22°C; and H, 43°C). Participants remained semireclined for 60 minutes before ingesting a 1.8 g/kg glucose beverage. Skin and rectal core temperatures were continuously monitored. Blood was collected just before glucose ingestion (time 0) and at 15, 30, 60, 90, 120, and 180 minutes, and analyzed for serum glucose, insulin, hematocrit, and hemoglobin. Expired gases were collected upon entering the chamber (-60 minutes), before glucose ingestion (0 minutes), and at 60, 120, and 180 minutes to determine V(O2) and respiratory exchange ratio. RESULTS: Rectal core temperature was greater in the H condition compared with both C and N (P < .001). Rectal core temperature was not different between C and N, whereas skin temperature was different across all trials (H greater than N greater than C). The V(O2) was greater in C than in both H and N during all time points. Carbohydrate oxidation was greater in C compared with H and N (P < 0.001). Glucose was higher during H compared with C and N (P ≤ 0.002). Glucose was elevated in C compared with N. Insulin was higher in H compared with C (P = 0.009). Area under the curve for serum glucose was greater in H compared with C and N (P ≤ 0.001); however, there was no significant difference in area under the curve for insulin. CONCLUSIONS: These data indicate that after an OGTT, glucose and insulin are elevated in a hot environment.


Asunto(s)
Glucemia/análisis , Temperatura Corporal , Frío , Metabolismo Energético , Calor , Insulina/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Montana , Temperatura Cutánea , Adulto Joven
15.
J Therm Biol ; 43: 7-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24956952

RESUMEN

The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m(-2) min(-1), respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.


Asunto(s)
Temperatura Corporal , Fatiga/fisiopatología , Calor , Carrera/fisiología , Adulto , Regulación de la Temperatura Corporal , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Fenómenos Fisiológicos de la Piel , Sudoración , Adulto Joven
16.
J Therm Biol ; 45: 134-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25436962

RESUMEN

The purpose of this study was to determine changes in physiological markers of heat acclimatization across a 4-month wildland fire season. Wildland firefighters (WLFF) (n=12) and non-WLFF (n=14) were assessed pre- and post-season for body mass, percent body fat, and peak VO2. Both groups completed a 60-min heat stress trial (walking at 50% of peak VO2) in a climate controlled chamber (43.3 °C, 33% RH) pre and post-fire season (May through September). During the trials, core (Tc) and skin (Tsk) temperatures, heart rate (HR), physiological strain index (PSI), and rating of perceived exertion (RPE) were measured. There were no differences pre or post-season between the WLFF and non-WLFF groups in body mass, percent body fat, or peak V.O2. During the 73 days where the WLFF were involved in direct wildland fire suppression, daily high temperature for the WLFF was higher compared to the non-WLFF, 30.6 ± 5.4 °C and 26.9 ± 6.1 °C, respectively, p<0.05. Tc was lower at post-season compared to pre-season (p<0.05) for the WLFF at 30, 45, and 60 min (pre 30, 45, and 60: 37.9 ± 0.3, 38.3 ± 0.3 and 38.5 ± 0.3 °C, respectively; post 30, 45, and 60: 37.8 ± 0.3, 38.1 ± 0.3 and 38.2 ± 0.4 °C, respectively). For WLFF, PSI was lower (p<0.05) at 15, 30, 45, and 60 min at post-season compared to pre-season (4.2 ± 0.7, 5.6 ± 0.9, 6.5 ± 0.9, and 7.1 ± 1.1 for 15, 30, 45, and 60 min pre-season, respectively; 3.6 ± 0.8, 4.9 ± 1.0, 5.7 ± 1.2, 6.3 ± 1.3 for 15, 30, 45, and 60 min post-season, respectively). For WLFF, RPE was lower during the post-season trial at 30, 45, and 60 min (pre 30, 45, and 60: 11.7 ± 1.4, 12.3 ± 1.2, and 13.5 ± 1.4, respectively; post 30, 45, and 60: 10.7 ± 1.2, 11.3 ± 1.3, and 11.9 ± 1.5, respectively), p<0.05. There were no differences between pre and post-season for the non-WLFF for Tc and PSI, but RPE was lower at 15 min during the pre-season trial. WLFFs demonstrated significant decreases in Tc, PSI, and RPE during controlled heat stress after the season. Since an age and fitness-matched control group experienced no indication of heat acclimatization, it is suggested that the long-term occupational heat exposure accrued by the WLFFs was adequate to incur heat acclimatization.


Asunto(s)
Aclimatación/fisiología , Bomberos , Calor , Estaciones del Año , Adulto , Tolerancia al Ejercicio , Frecuencia Cardíaca , Humanos , Masculino , Consumo de Oxígeno , Temperatura Cutánea , Sudoración
18.
Wilderness Environ Med ; 25(4): 462-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239028

RESUMEN

BACKGROUND: The ability to physically perform at high altitude may require unique strategies to acclimatize before exposure. The effect of acute hypoxic exposure on the metabolic response of the skeletal muscle may provide insight into the value of short-term preacclimatization strategies. OBJECTIVE: To determine the human skeletal muscle response to a single acute bout of exercise in a hypoxic environment on metabolic gene expression. METHODS: Eleven recreationally active male participants (24 ± 4 years, 173 ± 20 cm, 82 ± 12 kg, 15.2 ± 7.1% fat, 4.0 ± 0.6 L/min maximal oxygen consumption) completed two 1-hour cycling exercise trials at 60% of peak power followed by 4 hours of recovery in ambient environmental conditions (975 m) and at normobaric hypoxic conditions simulating 3000 m in a randomized counterbalanced order. Muscle biopsies were obtained from the vastus lateralis before exercise and 4 hours after exercise for real-time polymerase chain reaction analysis of select metabolic genes. RESULTS: Gene expression of hypoxia-inducible factor 1 alpha, cytochrome c oxidase subunit 4, peroxisome proliferator-activated receptor gamma coactivator 1 alpha, hexokinase, phosphofructokinase, mitochondrial fission 1, and mitofusin-2 increased with exercise (P < .05) but did not differ with hypoxic exposure (P > .05). Optic atrophy 1 did not increase with exercise or differ between environmental conditions (P > .05). CONCLUSIONS: The improvements in mitochondrial function reported with intermittent hypoxic training may not be explained by a single acute hypoxic exposure, and thus it appears that a longer period of preacclimatization than a single exposure may be required.


Asunto(s)
Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Músculo Esquelético/fisiopatología , ARN Mensajero/genética , Adulto , Prueba de Esfuerzo , GTP Fosfohidrolasas/genética , Hexoquinasa/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Proteínas Mitocondriales/genética , Atrofia Óptica Autosómica Dominante/genética , PPAR gamma/genética , Fosfofructoquinasas/genética , Reacción en Cadena de la Polimerasa , Adulto Joven
19.
Compr Physiol ; 13(2): 4587-4615, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36994767

RESUMEN

Wildland firefighters (WLFFs) are inserted as the front-line defense to minimize loss of natural resources, property, and human life when fires erupt in forested regions of the world. The WLFF occupation is physically demanding as exemplified by total daily energy expenditures that can exceed 25 MJ/day (6000 calories). WLFFs must also cope with complex physical and environmental situations (i.e., heat, altitude, smoke, compromised sleep, elevated stress) which challenge thermoregulatory responses, impair recovery, and increase short- and long-term injury/health risks while presenting logistical obstacles to nutrient and fluid replenishment. The occupation also imposes emotional strain on both the firefighter and their families. The long-term implications of wildfire management and suppression on the physical and mental health of WLFFs are significant, as the frequency and intensity of wildland fire outbreaks as well as the duration of the fire season is lengthening and expected to continue to expand over the next three decades. This article details the physical demands and emerging health concerns facing WLFFs, in addition to the challenges that the U.S. Forest Service and other international agencies must address to protect the health and performance of WLFFs and their ability to endure the strain of an increasingly dangerous work environment. © 2023 American Physiological Society. Compr Physiol 13:4587-4615, 2023.


Asunto(s)
Bomberos , Incendios , Humanos , Estados Unidos , Humo , Sueño
20.
J Hum Kinet ; 87: 81-92, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37229416

RESUMEN

Environmental temperature can impact exercise-induced blood oxidative stress; however, the effects of heat acclimation on this response have not been fully elucidated. The purpose of the study was to investigate the effects of hot (33°C) and room temperature (20°C) environments on post-exercise blood oxidative stress responses following 15 temperature acclimation sessions. Untrained participants (n = 38, 26 ± 7 years, VO2peak = 38.0 ± 7.2 years) completed 15 temperature acclimation sessions of a cycling bout at an intensity perceived as "hard" in either a hot (33°C) or room temperature (20°C) environment. Pre and post acclimation exercise tolerance trials were conducted, which involved cycling at 50% Wpeak for one hour. Blood sampling occurred before exercise, immediately after, two hours, and four hours after the exercise tolerance trials. Blood samples were analyzed for oxidative stress markers including lipid hydroperoxides, 8-isoprostanes, protein carbonyls, 3-nitrotyrosine, ferric-reducing ability of plasma, and Trolox-equivalent antioxidant capacity. Exercise-dependent increases were observed in lipid hydroperoxides, Trolox-equivalent antioxidant capacity, and ferric-reducing ability of plasma (p < 0.001). Considering exercise-induced elevations in markers of blood oxidative stress, there were no differences observed between environmental temperatures before or after the acclimation training period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA