Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Am Chem Soc ; 146(20): 14246-14259, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728108

RESUMEN

The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.

2.
Langmuir ; 40(13): 6612-6653, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38509763

RESUMEN

Closed-loop recycling via an efficient chemical process can help alleviate the global plastic waste crisis. However, conventional depolymerization methods for polyolefins, which compose more than 50% of plastics, demand high temperatures and pressures, employ precious noble metals, and/or yield complex mixtures of products limited to single-use fuels or oils. Superacidic forms of sulfated zirconia (SZrO) with Hammet Acidity Functions (H0) ≤ - 12 (i.e., stronger than 100% H2SO4) are industrially deployed heterogeneous catalysts capable of activating hydrocarbons under mild conditions and are shown to decompose polyolefins at temperatures near 200 °C and ambient pressure. Additionally, confinement of active sites in porous supports is known to radically increase selectivity, coking and sintering resistance, and acid site activity, presenting a possible approach to low-energy polyolefin depolymerization. However, a critical examination of the literature on SZrO led us to a surprising conclusion: despite 40 years of catalytic study, engineering, and industrial use, the surface chemistry of SZrO is poorly understood. Ostensibly spurred by SZrO's impressive catalytic activity, the application-driven study of SZrO has resulted in deleterious ambiguity in requisite synthetic conditions for superacidity and insufficient characterization of acidity, porosity, and active site structure. This ambiguity has produced significant knowledge gaps surrounding the synthesis, structure, and mechanisms of hydrocarbon activation for optimized SZrO, stunting the potential of this catalyst in olefin cracking and other industrially relevant reactions, such as isomerization, esterification, and alkylation. Toward mitigating these long extant issues, we herein identify and highlight these current shortcomings and knowledge gaps, propose explicit guidelines for characterization of and reporting on characterization of solid acidity, and discuss the potential of pore-confined superacids in the efficient and selective depolymerization of polyolefins.

3.
J Am Chem Soc ; 142(2): 1010-1019, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31894975

RESUMEN

Transition metal carbides (TMCs) have demonstrated outstanding potential for utilization in a wide range of catalytic applications because of their inherent multifunctionality and tunable composition. However, the harsh conditions required to prepare these materials have limited the scope of synthetic control over their physical properties. The development of low-temperature, carburization-free routes to prepare TMCs would unlock the versatility of this class of materials, enhance our understanding of their physical properties, and enable their cost-effective production at industrial scales. Here, we report an exceptionally mild and scalable solution-phase synthesis route to phase-pure molybdenum carbide (α-MoC1-x) nanoparticles (NPs) in a continuous flow millifluidic reactor. We exploit the thermolytic decomposition of Mo(CO)6 in the presence of a surface-stabilizing ligand and a high boiling point solvent to yield MoC1-x NPs that are colloidally stable and resistant to bulk oxidation in air. To demonstrate the utility of this synthetic route to prepare catalytically active TMC NPs, we evaluated the thermochemical CO2 hydrogenation performance of α-MoC1-x NPs dispersed on an inert carbon support. The α-MoC1-x/C catalyst exhibited a 2-fold increase in both activity on a per-site basis and selectivity to C2+ products as compared to the bulk α-MoC1-x analogue.

4.
Angew Chem Int Ed Engl ; 55(31): 9026-9, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27271466

RESUMEN

Surface modification of mesoporous SBA-15 silica generated a hydrophobic environment for a molybdenum diamine (Mo-diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α-MoC1-x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α-MoC1-x and ß-Mo2 C, the NPs exhibit a greater acid-site:H-site ratio and a fraction of stronger acid sites. The greater acid-site:H-site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard-templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports.

5.
Inorg Chem ; 54(9): 4550-5, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25884959

RESUMEN

A series of Mn12O12(OAc)(16-x)L(x)(H2O)4 molecular clusters (L = acetate, benzoate, benzenesulfonate, diphenylphosphonate, dichloroacetate) were electrocatalytically investigated as water oxidation electrocatalysts on a fluorine-doped tin oxide glass electrode. Four of the [Mn12O12] compounds demonstrated water oxidation activity at pH 7.0 at varying overpotentials (640-820 mV at 0.2 mA/cm(2)) and with high Faradaic efficiency (85-93%). For the most active complex, more than 200 turnovers were observed after 5 min. Two structure-function relationships for these complexes were developed. First, these complexes must undergo at least one-electron oxidation to become active catalysts, and complexes that cannot be oxidized in this potential window were inactive. Second, a greater degree of distortion at Mn1 and Mn3 centers correlated with higher catalytic activity. From this distortion analysis, either or both of these two Mn centers are proposed to be the catalytically active site.

6.
ChemSusChem ; 15(12): e202200535, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35395145

RESUMEN

Decomposition of polymers by heterogeneous catalysts presents a promising approach for reuse of waste plastics. We demonstrated non-hydrogenative decomposition of model polyolefins over proton-form and metal (Cu, Ni) ion-exchanged beta (BEA) zeolites at moderate temperatures (around 300 °C). Near complete polyolefin decomposition was observed in batch reactions monitored by thermogravimetric analysis, while decomposition at partial conversion was studied in flow reactions. Ni-exchanged zeolites produced H2 at substantially higher rates (>10x) than other catalysts while also uniquely resisting deactivation over time. Application of the delplot formalism offered insights into the reaction network for polyolefin decomposition over Ni/BEA most notably that H2 is solely a primary product. We deduce that H2 production is catalyzed by activation of C-H bonds at ionic Ni sites, and H2 prevents buildup of polyaromatic coke species in Ni-exchanged zeolites that deactivate Cu-exchanged and protonic zeolites.

7.
Chem Mater ; 34(19): 8849-8857, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36248231

RESUMEN

Transition-metal carbides are promising low-cost materials for various catalytic transformations due to their multifunctionality and noble-metal-like behavior. Nanostructuring transition-metal carbides offers advantages resulting from the large surface-area-to-volume ratios inherent in colloidal nanoparticle catalysts; however, a barrier for their utilization is removal of the long-chain aliphatic ligands on their surface to access active sites. Annealing procedures to remove these ligands require temperatures greater than the catalyst synthesis and catalytic reaction temperatures and may further result in coking or particle sintering that can reduce catalytic performance. One way to circumvent this problem is by replacing the long-chain aliphatic ligands with smaller ligands that can be easily removed through low-temperature thermolytic decomposition. Here, we present the exchange of native oleylamine ligands on colloidal α-MoC1-x nanoparticles for thermally labile tert-butylamine ligands. Analyses of the ligand exchange reaction by solution 1H NMR spectroscopy, FT-IR spectroscopy, and thermogravimetric analysis-mass spectrometry (TGA-MS) confirm the displacement of 60% of the native oleylamine ligands for the thermally labile tert-butylamine, which can be removed with a mild activation step at 250 °C. Catalytic site densities were determined by carbon monoxide (CO) chemisorption, demonstrating that the mild thermal treatment at 250 °C activates ca. 25% of the total binding sites, while the native oleylamine-terminated MoC1-x nanoparticles showed no available surface binding sites after this low-temperature treatment. The mild pretreatment at 250 °C also shows distinctly different initial activities and postinduction period selectivities in the CO2 hydrogenation reaction for the ligand exchanged MoC1-x nanoparticle catalysts and the as-prepared material.

8.
ACS Appl Energy Mater ; 3(11): 10435-10446, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38434678

RESUMEN

The design of nanoparticles (NPs) with tailored morphologies and finely tuned electronic and physical properties has become a key strategy for controlling selectivity and improving conversion efficiency in a variety of important electrocatalytic transformations. Transition metal phosphide NPs, in particular, have emerged as a versatile class of catalytic materials due to their multifunctional active sites and composition- and phase-dependent properties. Access to targeted transition metal phosphide NPs with controlled features is necessary to tune the catalytic activity. To this end, we have established a solution-synthesis route utilizing a molecular precursor containing M-P bonds to generate solid metal phosphide NPs with controlled stoichiometry and morphology. We expand here the application of molecular precursors in metal phosphide NP synthesis to include the preparation of phase-pure Cu3P NPs from the thermal decomposition of [Cu(H)(PPh3)]6. The mechanism of [Cu(H)(PPh3)]6 decomposition and subsequent formation of Cu3P was investigated through modification of the reaction parameters. Identification and optimization of the critical reaction parameters (i.e., time, temperature, and oleylamine concentration) enabled the synthesis of phase-pure 9-11 nm Cu3P NPs. To probe the multifunctionality of this materials system, Cu3P NPs were investigated as an electrocatalyst for CO2 reduction. At low overpotential (-0.30 V versus RHE) in 0.1 M KHCO3 electrolyte, Cu3P-modified carbon paper electrodes produced formate (HCOO-) at a maximum Faradaic efficiency of 8%.

9.
ACS Sustain Chem Eng ; 8(32): 12151-12160, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38435970

RESUMEN

Oxymethylene dimethyl ethers (OMEs), CH3-(OCH2)n-OCH3, n = 1-5, possess attractive low-soot diesel fuel properties. Methanol is a key precursor in the production of OMEs, providing an opportunity to incorporate renewable carbon sources via gasification and methanol synthesis. The costly production of anhydrous formaldehyde in the typical process limits this option. In contrast, the direct production of OMEs via a dehydrogenative coupling (DHC) reaction, where formaldehyde is produced and consumed in a single reactor, may address this limitation. We report the gas-phase DHC reaction of methanol to dimethoxymethane (DMM), the simplest OME, with n = 1, over bifunctional metal-acid catalysts based on Cu. A Cu-zirconia-alumina (Cu/ZrAlO) catalyst achieved 40% of the DMM equilibrium-limited yield under remarkably mild conditions (200 °C, 1.7 atm). The performance of the Cu/ZrAlO catalyst was attributed to metallic Cu nanoparticles that enable dehydrogenation and a distribution of acid strengths on the ZrAlO support, which reduced the selectivity to dimethyl ether compared to a that obtained with a Cu/Al2O3 catalyst. The DMM formation rate of 6.1 h-1 compares favorably against well-studied oxidative DHC approaches over non-noble, mixed-metal oxide catalysts. The results reported here set the foundation for further development of the DHC route to OME production, rather than oxidative approaches.

10.
J Am Chem Soc ; 130(33): 11088-96, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18662001

RESUMEN

The reaction kinetics of cyclohexene epoxidation using aqueous H2O2 oxidant and the highly selective epoxidation catalyst Bu(cap)TaSBA15 were studied. The reaction was determined to be first-order in Ta(V) surface coverage. The reaction rate exhibited saturation with respect to increasing concentrations of cyclohexene and H2O2. An Eley-Rideal mechanism and rate equation may be used to describe the epoxidation kinetics, which are similar to those for Ti(IV)SiO2-catalyzed epoxidations. The observed kinetics may also be modeled by a double-displacement mechanism typically associated with saturation enzyme catalysts. In addition, (1)H NMR spectroscopy was employed to investigate H2O2 decomposition by Bu(cap)TaSBA15 and the unmodified TaSBA15 catalysts. Little decomposition occurred over the surface-modified material, but the unmodified material catalyzed a 30% conversion of H2O2 after 6 h. UV-visible absorbance and diffuse reflectance UV-visible (DRUV-vis) spectroscopy were used to investigate the structure of the Ta centers on the TaSBA15 catalysts. DRUV-vis spectroscopy was also used to identify a Ta(V)-based epoxidation intermediate, proposed to be a Ta(V)(eta(2)-O2) species, which forms upon reaction of the TaSBA15 and Bu(cap)TaSBA15 materials with H2O2.


Asunto(s)
Alquenos/química , Compuestos Epoxi/síntesis química , Peróxido de Hidrógeno/química , Dióxido de Silicio/química , Tantalio/química , Catálisis , Compuestos Epoxi/química , Cinética , Oxidación-Reducción , Propiedades de Superficie , Factores de Tiempo , Agua/química
11.
Chem Commun (Camb) ; (32): 3350-2, 2007 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18019495

RESUMEN

Trialkylsiloxy-modified Ta(v) centers on mesoporous silica exhibit excellent selectivity for epoxide formation (>98% after 2 h) in the oxidation of cyclohexene using aqueous H2O2 as the oxidant; the modified catalysts exhibit an increased lifetime, retaining high selectivity after 6 h of reaction (>95% epoxide).

12.
J Phys Chem Lett ; 7(1): 148-53, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26652065

RESUMEN

We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN)4. We observe that smaller NCs (123 or 78 nm cross section and <25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ∼5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ∼20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependence is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ∼25 nm for use in energy harvesting, spin switching, and other applications.

13.
Acta Pol Pharm ; 59(1): 15-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12026106

RESUMEN

A quantitative method using silica gel HPTLC plates with fluorescent indicator, automated sample application, and automated UV absorption densitometry of the fluorescence quenching zones was developed and validated for determination of loperamide hydrochloride in anti-diarrheal medications. Samples of three brands of caplets assayed within 96.0-105% of the 2 mg label value. Repeatability was 3.3%, 1.6%, and 2.8% (RSD) for replicate analyses (n=6) of three tablets. The errors of a blank-spike and standard analyses performed to evaluate accuracy were 2.00% and 2.02%, respectively. The method is suitable for application in a drug manufacturing quality control or regulatory analysis laboratory.


Asunto(s)
Antidiarreicos/análisis , Loperamida/análisis , Antidiarreicos/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Densitometría/métodos , Loperamida/química , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Comprimidos
14.
J Phys Chem Lett ; 4(3): 416-21, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26281733

RESUMEN

We present an expansion of the mixed-valence iodide reduction method for the synthesis of Ge nanocrystals (NCs) to incorporate low levels (∼1 mol %) of groups III, IV, and V elements to yield main-group element-alloyed Ge NCs (Ge1-xEx NCs). Nearly every main-group element (E) that surrounds Ge on the periodic table (Al, P, Ga, As, In, Sn, and Sb) may be incorporated into Ge1-xEx NCs with remarkably high E incorporation into the product (>45% of E added to the reaction). Importantly, surface chemistry modification via ligand exchange allowed conductive films of Ge1-xEx NCs to be prepared, which exhibit conductivities over large distances (25 µm) relevant to optoelectronic device development of group IV NC thin films.

15.
ACS Nano ; 6(6): 5498-506, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22571723

RESUMEN

We have synthesized alkylselenide reagents to replace the native oleate ligand on PbSe quantum dots (QDs) in order to investigate the effect of surface modification on their stoichiometry, photophysics, and air stability. The alkylselenide reagent removes all of the oleate on the QD surface and results in Se addition; however, complete Se enrichment does not occur, achieving a 53% decrease in the amount of excess Pb for 2 nm diameter QDs and a 23% decrease for 10 nm QDs. Our analysis suggests that the Se ligand preferentially binds to the {111} faces, which are more prevalent in smaller QDs. We find that attachment of the alkylselenide ligand to the QD surface enhances oxidative resistance, likely resulting from a more stable bond between surface Pb atoms and the alkylselenide ligand compared to Pb-oleate. However, binding of the alkylselenide ligand produces a separate nonradiative relaxation route that partially quenches PL, suggesting the formation of a dark hole-trap.


Asunto(s)
Plomo/química , Puntos Cuánticos , Compuestos de Selenio/química , Selenio/química , Cristalización/métodos , Plomo/efectos de la radiación , Luz , Ensayo de Materiales , Compuestos de Selenio/efectos de la radiación
16.
ACS Nano ; 4(12): 7459-66, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21090762

RESUMEN

We present a novel colloidal synthesis of alkyl-terminated Ge nanocrystals based on the reduction of GeI(4)/GeI(2) mixtures. The size of the nanocrystals (2.3-11.3 nm) was controlled by adjusting both the Ge(IV)/Ge(II) ratio and the temperature ramp rate following reductant injection. The near-infrared absorption (1.6-0.70 eV) and corresponding band-edge emission demonstrate the highly tunable quantum confinement effects in Ge nanocrystals prepared using this mixed-valence precursor method. A mechanism is proposed for the observed size control, which relies upon the difference in reduction temperatures for Ge(II) versus Ge(IV).


Asunto(s)
Germanio/química , Rayos Infrarrojos , Nanopartículas del Metal/química , Tamaño de la Partícula , Coloides , Yoduros/química , Soluciones , Temperatura
17.
Langmuir ; 21(21): 9576-83, 2005 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-16207038

RESUMEN

The thermolytic molecular precursor method was used to introduce site-isolated Ti(IV) centers onto the surface of a mesoporous SBA15 support. The resulting surface Si-OH/Ti-OH sites of the Ti-SBA15 catalysts were modified with a series of (N,N-dimethylamino)trialkylsilanes, Me(2)N-SiMe(2)(R) (where R = Me, (n)Bu, or (n)Oc). Compared with the unmodified catalysts, the surface-modified catalysts are more active in the oxidation of cyclohexene with H(2)O(2) and exhibit a significantly higher selectivity (up to 58%) for cyclohexene oxide formation (vs allylic oxidation products). In situ Fourier transform infrared (FTIR) and diffuse reflectance UV visible (DRUV-vis) spectroscopies were used to probe this phenomenon, and it was determined that active sites with capped titanol centers, (SiO(surface))(3)Ti(OSiR(3)), likely undergo Ti-OOH formation upon addition of H(2)O(2) in a manner analogous to that for active sites of the type (SiO(surface))(3)TiOH. On the basis of the observation of similar Ti-OOH intermediates for both species, the electron-withdrawing effects on the Ti(IV) active site, resulting from the surface modification, are likely responsible for the observed increase in selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA