Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 20(10): 1372-1380, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451789

RESUMEN

In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of RUNX transcription factor paralogs with apparent functional redundancy. Here we asked what cell-type-specific biologies might be supported by the selective expression of RUNX paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional nonequivalence between RUNX paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain and evolutionary reconstruction suggested convergence of RUNT domain residues toward submaximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Sistema Inmunológico/fisiología , Células de Langerhans/fisiología , Especificidad de Órganos/genética , Linfocitos T Reguladores/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Secuencia Conservada , Evolución Molecular , Duplicación de Gen , Humanos , Mamíferos , Transducción de Señal , Transcriptoma
2.
Mol Cell ; 83(18): 3253-3267.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683646

RESUMEN

RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Polimerasa II/genética , ADN , Transcripción Genética , Exonucleasas , Factores de Elongación de Péptidos , Saccharomyces cerevisiae/genética , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell ; 83(16): 2925-2940.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499663

RESUMEN

Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.


Asunto(s)
Proteína BRCA2 , Recombinasa Rad51 , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN de Cadena Simple/genética , ADN/metabolismo , Reparación del ADN , Unión Proteica
4.
Mol Cell ; 83(19): 3533-3545.e5, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802026

RESUMEN

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces. Using an adapted CIRCLE-seq approach, we detect over 10,000 negative-supercoiling-induced Cas9 off-target double-strand breaks genome-wide caused by increased mismatch tolerance. We further demonstrate in vivo that directed local DNA distortion increases off-target activity in cells and that induced off-target events can be detected during Cas9 genome editing. These data demonstrate that Cas9 off-target activity is regulated by DNA topology in vitro and in vivo, suggesting that cellular processes, such as transcription and replication, could induce off-target activity at previously overlooked sites.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma , ADN/genética , Pinzas Ópticas
5.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455556

RESUMEN

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


Asunto(s)
Roturas del ADN de Doble Cadena , Neoplasias , Humanos , Replicación del ADN/genética , Inestabilidad Genómica , ADN de Cadena Simple/genética , Mutaciones Letales Sintéticas , Reparación del ADN por Unión de Extremidades , Neoplasias/genética
6.
Mol Cell ; 81(5): 1058-1073.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421363

RESUMEN

Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Portadoras/genética , ADN de Helmintos/genética , Proteínas de Unión al ADN/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , ADN de Helmintos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transducción de Señal , Imagen Individual de Molécula
7.
Nature ; 601(7892): 268-273, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937945

RESUMEN

DNA double-stranded breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3' to 5' polarity, and its disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2-4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C, and persistence of RAD51 foci after DNA damage3,5. Notably, HELQ binds to RPA and the RAD51-paralogue BCDX2 complex, but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here we show that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry analyses and single-molecule imaging, we establish that RAD51 forms a complex with and strongly stimulates HELQ as it translocates during DNA unwinding. By contrast, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary sequences. Finally, we show that HELQ deficiency in cells compromises single-strand annealing and microhomology-mediated end-joining pathways and leads to bias towards long-tract gene conversion tracts during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair through co-factor-dependent modulation of intrinsic translocase and DNA strand annealing activities.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas , Reparación del ADN , Recombinasa Rad51 , Proteína de Replicación A , ADN , ADN Helicasas/metabolismo , ADN de Cadena Simple , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo
8.
PLoS Pathog ; 19(7): e1011494, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523412

RESUMEN

Infections by Human T cell Leukaemia Virus type 1 (HTLV-1) persist for the lifetime of the host by integrating into the genome of CD4+ T cells. Proviral gene expression is essential for proviral survival and the maintenance of the proviral load, through the pro-proliferative changes it induces in infected cells. Despite their role in HTLV-1 infection and a persistent cytotoxic T lymphocyte response raised against the virus, proviral transcripts from the sense-strand are rarely detected in fresh cells extracted from the peripheral blood, and have recently been found to be expressed intermittently by a small subset of cells at a given time. Ex vivo culture of infected cells prompts synchronised proviral expression in infected cells from peripheral blood, allowing the study of factors involved in reactivation in primary cells. Here, we used bulk RNA-seq to examine the host transcriptome over six days in vitro, following proviral reactivation in primary peripheral CD4+ T cells isolated from subjects with non-malignant HTLV-1 infection. Infected cells displayed a conserved response to reactivation, characterised by discrete stages of gene expression, cell division and subsequently horizontal transmission of the virus. We observed widespread changes in Polycomb gene expression following reactivation, including an increase in PRC2 transcript levels and diverse changes in the expression of PRC1 components. We hypothesize that these transcriptional changes constitute a negative feedback loop that maintains proviral latency by re-deposition of H2AK119ub1 following the end of proviral expression. Using RNAi, we found that certain deubiquitinases, BAP1, USP14 and OTUD5 each promote proviral transcription. These data demonstrate the detailed trajectory of HTLV-1 proviral reactivation in primary HTLV-1-carrier lymphocytes and the impact on the host cell.


Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Humanos , Virus Linfotrópico T Tipo 1 Humano/fisiología , Provirus/genética , Transcriptoma , Linfocitos T CD4-Positivos , Carga Viral , Ubiquitina Tiolesterasa/metabolismo
9.
Cell Commun Signal ; 21(1): 295, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864183

RESUMEN

BACKGROUND: When ectopically overexpressed, anticancer genes, such as TRAIL, PAR4 and ORCTL3, specifically destroy tumour cells without harming untransformed cells. Anticancer genes can not only serve as powerful tumour specific therapy tools but studying their mode of action can reveal mechanisms underlying the neoplastic transformation, sustenance and spread. METHODS: Anticancer gene discovery is normally accidental. Here we describe a systematic, gain of function, forward genetic screen in mammalian cells to isolate novel anticancer genes of human origin. Continuing with over 30,000 transcripts from our previous study, 377 cell death inducing genes were subjected to screening. FBLN5 was chosen, as a proof of principle, for mechanistic gene expression profiling, comparison pathways analyses and functional studies. RESULTS: Sixteen novel anticancer genes were isolated; these included non-coding RNAs, protein-coding genes and novel transcripts, such as ZNF436-AS1, SMLR1, TMEFF2, LINC01529, HYAL2, NEIL2, FBLN5, YPEL4 and PHKA2-processed transcript. FBLN5 selectively caused inhibition of MYC in COS-7 (transformed) cells but not in CV-1 (normal) cells. MYC was identified as synthetic lethality partner of FBLN5 where MYC transformed CV-1 cells experienced cell death upon FBLN5 transfection, whereas FBLN5 lost cell death induction in MCF-7 cells upon MYC knockdown. CONCLUSIONS: Sixteen novel anticancer genes are present in human genome including FBLN5. MYC is a synthetic lethality partner of FBLN5. Video Abstract.


Asunto(s)
Transformación Celular Neoplásica , Perfilación de la Expresión Génica , Animales , Humanos , Proteínas de la Matriz Extracelular/metabolismo , Pruebas Genéticas , Mamíferos/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Fosforilasa Quinasa , Factores de Transcripción/genética
10.
PLoS Pathog ; 15(11): e1008164, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31738810

RESUMEN

The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1+ individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo. We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1+ PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1+ clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1+ cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ-negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.


Asunto(s)
Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Leucocitos Mononucleares/virología , Análisis de la Célula Individual/métodos , Proteínas Virales/genética , Activación Viral/genética , Latencia del Virus/genética , Células Cultivadas , Regulación Viral de la Expresión Génica , Infecciones por HTLV-I/genética , Humanos , Hibridación Fluorescente in Situ , Cinética , Procesos Estocásticos , Replicación Viral
11.
Phys Chem Chem Phys ; 23(47): 26640-26644, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494640

RESUMEN

Using optical tweezers, we investigate target search and cleavage by CRISPR-Cas12a on force-stretched λ-DNA. Cas12a uses fast, one-dimensional hopping to locate its target. Binding and cleavage occur rapidly and specifically at low forces (≤5 pN), with a 1.8 nm rate-limiting conformational change. Mechanical distortion slows diffusion, increases off-target binding but hinders cleavage.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , ADN/química , Endodesoxirribonucleasas/química , Sistemas CRISPR-Cas , Modelos Moleculares , Pinzas Ópticas
12.
Proc Natl Acad Sci U S A ; 115(47): 11917-11922, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397128

RESUMEN

Unlike in vivo conditions, group II intron ribozymes are known to require high magnesium(II) concentrations ([Mg2+]) and high temperatures (42 °C) for folding and catalysis in vitro. A possible explanation for this difference is the highly crowded cellular environment, which can be mimicked in vitro by macromolecular crowding agents. Here, we combined bulk activity assays and single-molecule Förster Resonance Energy Transfer (smFRET) to study the influence of polyethylene glycol (PEG) on catalysis and folding of the ribozyme. Our activity studies reveal that PEG reduces the [Mg2+] required, and we found an "optimum" [PEG] that yields maximum activity. smFRET experiments show that the most compact state population, the putative active state, increases with increasing [PEG]. Dynamic transitions between folded states also increase. Therefore, this study shows that optimal molecular crowding concentrations help the ribozyme not only to reach the native fold but also to increase its in vitro activity to approach that in physiological conditions.


Asunto(s)
Espacio Intracelular/fisiología , Autoempalme del ARN Ribosómico/fisiología , Catálisis/efectos de los fármacos , Biología Celular , Biología Computacional/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Magnesio/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Polietilenglicoles , Pliegue de Proteína/efectos de los fármacos , ARN Catalítico/metabolismo , ARN Catalítico/fisiología , Autoempalme del ARN Ribosómico/metabolismo
13.
Angew Chem Int Ed Engl ; 60(38): 20952-20959, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34378843

RESUMEN

Threading intercalators bind DNA with high affinities. Here, we describe single-molecule studies on a cell-permeant luminescent dinuclear ruthenium(II) complex that has been previously shown to thread only into short, unstable duplex structures. Using optical tweezers and confocal microscopy, we show that this complex threads and locks into force-extended duplex DNA in a two-step mechanism. Detailed kinetic studies reveal that an individual stereoisomer of the complex exhibits the highest binding affinity reported for such a mono-intercalator. This stereoisomer better preserves the biophysical properties of DNA than the widely used SYTOX Orange. Interestingly, threading into torsionally constrained DNA decreases dramatically, but is rescued on negatively supercoiled DNA. Given the "light-switch" properties of this complex on binding DNA, it can be readily used as a long-lived luminescent label for duplex or negatively supercoiled DNA through a unique "load-and-lock" protocol.


Asunto(s)
Complejos de Coordinación/química , Sondas de ADN/química , ADN/análisis , Rutenio/química , Estructura Molecular
14.
Phys Chem Chem Phys ; 20(42): 26892-26902, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30345999

RESUMEN

DNA synthesis, carried out by DNA polymerases, requires balancing speed and accuracy for faithful replication of the genome. High fidelity DNA polymerases contain a 3'-5' exonuclease domain that can remove misincorporated nucleotides on the 3' end of the primer strand, a process called proofreading. The E. coli replicative polymerase, DNA polymerase III, has spatially separated (∼55 Å apart) polymerase and exonuclease subunits. Here, we report on the dynamics of E. coli DNA polymerase III proofreading in the presence of its processivity factor, the ß2-sliding clamp, at varying base pair termini using single-molecule FRET. We find that the binding kinetics do not depend on the base identity at the termini, indicating a tolerance for DNA mismatches. Further, our single-molecule data and MD simulations show two previously unobserved features: (1) DNA Polymerase III is a highly dynamic protein that adopts multiple conformational states while bound to DNA with matched or mismatched ends, and (2) an exonuclease-deficient DNA polymerase III has reduced conformational flexibility. Overall, our single-molecule experiments provide high time-resolution insight into a mechanism that ensures high fidelity DNA replication to maintain genome integrity.


Asunto(s)
ADN Polimerasa III/metabolismo , ADN/metabolismo , Exonucleasas/metabolismo , Disparidad de Par Base , ADN/química , ADN/genética , ADN Polimerasa III/química , ADN Polimerasa III/genética , Escherichia coli/química , Exonucleasas/química , Exonucleasas/genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Subunidades de Proteína
15.
ArXiv ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36866225

RESUMEN

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.

16.
Methods Appl Fluoresc ; 12(1)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37726007

RESUMEN

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.


Asunto(s)
ADN , Proteínas , ADN/química , Proteínas/química , Transferencia Resonante de Energía de Fluorescencia
17.
Methods Mol Biol ; 2404: 267-280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694614

RESUMEN

In recent years, fluorogenic RNA aptamers, such as Spinach, Broccoli, Corn, Mango, Coral, and Pepper have gathered traction as an efficient alternative labeling strategy for background-free imaging of cellular RNAs. However, their application has been somewhat limited by relatively inefficient folding and fluorescent stability. With the recent advent of novel RNA-Mango variants which are improved in both fluorescence intensity and folding stability in tandem arrays, it is now possible to image RNAs with single-molecule sensitivity. Here we discuss the protocol for imaging Mango II tagged RNAs in both fixed and live cells.


Asunto(s)
Mangifera , ARN/genética , Aptámeros de Nucleótidos , Colorantes Fluorescentes , Spinacia oleracea
18.
Methods Mol Biol ; 2478: 349-378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063327

RESUMEN

The discovery of CRISPR/Cas9 as an easily programmable endonuclease heralds a new era of genetic manipulation. With this comes the prospect of novel gene therapy approaches, and the potential to cure previously untreatable genetic diseases. However, reports of spurious off-target editing by CRISPR/Cas9 pose a significant hurdle to realizing this potential. A deeper understanding of the factors that affect Cas9 specificity is vital for development of safe and efficient therapeutics. Here, we describe methods for the use of optical tweezers combined with confocal fluorescence microscopy and microfluidics for the analysis of on- and off-target activity of Cas9 activity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Edición Génica/métodos , Terapia Genética/métodos , Imagen Individual de Molécula
19.
Nat Commun ; 13(1): 5921, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207294

RESUMEN

Resolution of Holliday junctions is a critical intermediate step of homologous recombination in which junctions are processed by junction-resolving endonucleases. Although binding and cleavage are well understood, the question remains how the enzymes locate their substrate within long duplex DNA. Here we track fluorescent dimers of endonuclease I on DNA, presenting the complete single-molecule reaction trajectory for a junction-resolving enzyme finding and cleaving a Holliday junction. We show that the enzyme binds remotely to dsDNA and then undergoes 1D diffusion. Upon encountering a four-way junction, a catalytically-impaired mutant remains bound at that point. An active enzyme, however, cleaves the junction after a few seconds. Quantitative analysis provides a comprehensive description of the facilitated diffusion mechanism. We show that the eukaryotic junction-resolving enzyme GEN1 also undergoes facilitated diffusion on dsDNA until it becomes located at a junction, so that the general resolution trajectory is probably applicable to many junction resolving enzymes.


Asunto(s)
ADN Cruciforme , ADN , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Conformación de Ácido Nucleico
20.
STAR Protoc ; 2(2): 100588, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34169285

RESUMEN

Here, we describe a rapid and versatile protocol to generate gapped DNA substrates for single-molecule (SM) analysis using optical tweezers via site-specific Cas9 nicking and force-induced melting. We provide examples of single-stranded (ss) DNA gaps of different length and position. We outline protocols to visualize these substrates by replication protein A-enhanced Green Fluorescent Protein (RPA-eGFP) and SYTOX Orange staining using commercially available optical tweezers (C-TRAP). Finally, we demonstrate the utility of these substrates for SM analysis of bidirectional growth of RAD-51-ssDNA filaments. For complete details on the use and execution of this protocol, please refer to Belan et al. (2021).


Asunto(s)
ADN de Cadena Simple/química , ADN/química , Imagen Individual de Molécula/métodos , Proteínas Fluorescentes Verdes/química , Humanos , Imagen Óptica , Pinzas Ópticas , Recombinasa Rad51/química , Proteínas Recombinantes/química , Proteína de Replicación A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA