Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 555(7698): 688, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29595769

RESUMEN

This corrects the article DOI: 10.1038/nature15256.

2.
Am Nat ; 197(1): 29-46, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33417522

RESUMEN

AbstractDetecting contemporary evolution requires demonstrating that genetic change has occurred. Mixed effects models allow estimation of quantitative genetic parameters and are widely used to study evolution in wild populations. However, predictions of evolution based on these parameters frequently fail to match observations. Here, we applied three commonly used quantitative genetic approaches to predict the evolution of size at maturity in a wild population of Trinidadian guppies. Crucially, we tested our predictions against evolutionary change observed in common-garden experiments performed on samples from the same population. We show that standard quantitative genetic models underestimated or failed to detect the cryptic evolution of this trait as demonstrated by the common-garden experiments. The models failed because (1) size at maturity and fitness both decreased with increases in population density, (2) offspring experienced higher population densities than their parents, and (3) selection on size was strongest at high densities. When we accounted for environmental change, predictions better matched observations in the common-garden experiments, although substantial uncertainty remained. Our results demonstrate that predictions of evolution are unreliable if environmental change is not appropriately captured in models.


Asunto(s)
Evolución Biológica , Tamaño Corporal/genética , Poecilia/genética , Animales , Aptitud Genética , Masculino , Modelos Genéticos , Poecilia/anatomía & histología , Densidad de Población , Selección Genética , Maduración Sexual
3.
Nature ; 525(7569): 372-5, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26331546

RESUMEN

Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively little attention; however, our results suggest that it may be an important mechanism that predicts evolutionary responses to new environments.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Regulación de la Expresión Génica/genética , Poecilia/genética , Animales , Encéfalo/metabolismo , Cíclidos/fisiología , Femenino , Proteínas de Peces/genética , Genotipo , Masculino , Modelos Genéticos , Fenotipo , Poecilia/fisiología , ARN Mensajero/análisis , ARN Mensajero/genética , Ríos , Selección Genética/genética
4.
J Evol Biol ; 33(10): 1361-1370, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32896937

RESUMEN

Genital morphology exhibits tremendous variation and is intimately linked with fitness. Sexual selection, nonmating natural selection and neutral forces have been explored as potential drivers of genital divergence. Though less explored, genitalia may also be plastic in response to the developmental environment. In poeciliid fishes, the length of the male intromittent organ, the gonopodium, may be driven by sexual selection if longer gonopodia attract females or aid in forced copulation attempts or by nonmating natural selection if shorter gonopodia allow predator evasion. The rearing environment may also affect gonopodium development. Using an experimental introduction of Trinidadian guppies into four replicate streams with reduced predation risk, we tested whether this new environment caused the evolution of genitalia. We measured gonopodium length after rearing the source and introduced populations for two generations in the laboratory to remove maternal and other environmental effects. We split full-sibling brothers into different rearing treatments to additionally test for developmental plasticity of gonopodia in response to predator cues and food levels as well as the evolution of plasticity. The introduced populations had shorter gonopodia after accounting for body size, demonstrating rapid genital evolution in 2-3 years (8-12 generations). Brothers reared on low food levels had longer gonopodia relative to body size than those on high food, reflecting maintenance of gonopodium length despite a reduction in body size. In contrast, gonopodium length was not significantly different in response to the presence or absence of predator cues. Because the plastic response to low food was maintained between the source and introduced populations, there was no evidence that plasticity evolved. This study demonstrates the importance of both evolution and developmental plasticity in explaining genital variation.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genitales/anatomía & histología , Poecilia/genética , Animales , Femenino , Masculino , Poecilia/anatomía & histología
5.
Am Nat ; 194(5): 671-692, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31613664

RESUMEN

Organisms can change their environment and in doing so change the selection they experience and how they evolve. Population density is one potential mediator of such interactions because high population densities can impact the ecosystem and reduce resource availability. At present, such interactions are best known from theory and laboratory experiments. Here we quantify the importance of such interactions in nature by transplanting guppies from a stream where they co-occur with predators into tributaries that previously lacked both guppies and predators. If guppies evolve solely because of the immediate reduction in mortality rate, the strength of selection and rate of evolution should be greatest at the outset and then decline as the population adapts to its new environment. If indirect effects caused by the increase in guppy population density in the absence of predation prevail, then there should be a lag in guppy evolution because time is required for them to modify their environment. The duration of this lag is predicted to be associated with the environmental modification caused by guppies. We observed a lag in life-history evolution associated with increases in population density and altered ecology. How guppies evolved matched predictions derived from evolutionary theory that incorporates such density effects.


Asunto(s)
Evolución Biológica , Rasgos de la Historia de Vida , Poecilia/fisiología , Animales , Tamaño Corporal , Ecosistema , Femenino , Masculino , Poecilia/genética , Densidad de Población , Conducta Predatoria , Trinidad y Tobago
6.
Nature ; 555(7698): E23, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29595766
7.
Mol Ecol ; 21(7): 1617-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22335296

RESUMEN

Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured-exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.


Asunto(s)
Ecosistema , Síndrome de Inmunodeficiencia Adquirida del Felino/transmisión , Flujo Génico , Lynx/genética , Lynx/virología , Alelos , Animales , Teorema de Bayes , California , Gatos , Análisis por Conglomerados , Variación Genética , Genética de Población/métodos , Técnicas de Genotipaje , Virus de la Inmunodeficiencia Felina/genética , Funciones de Verosimilitud , Repeticiones de Microsatélite , Filogenia , Urbanización
8.
Integr Comp Biol ; 54(5): 794-804, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25201899

RESUMEN

Colonization of novel environments can alter selective pressures and act as a catalyst for rapid evolution in nature. Theory and empirical studies suggest that the ability of a population to exhibit an adaptive evolutionary response to novel selection pressures should reflect the presence of sufficient additive genetic variance and covariance for individual and correlated traits. As correlated traits should not respond to selection independently, the structure of correlations of traits can bias or constrain adaptive evolution. Models of how multiple correlated traits respond to selection often assume spatial and temporal stability of trait-correlations within populations. Yet, trait-correlations can also be plastic in response to environmental variation. Phenotypic plasticity, the ability of a single genotype to produce different phenotypes across environments, is of particular interest because it can induce population-wide changes in the combination of traits exposed to selection and change the trajectory of evolutionary divergence. We tested the ability of phenotypic plasticity to modify trait-correlations by comparing phenotypic variance and covariance in the body-shapes of four experimental populations of Trinidadian guppies (Poecilia reticulata) to their ancestral population. We found that phenotypic plasticity produced both adaptive and novel aspects of body-shape, which was repeated in all four experimental populations. Further, phenotypic plasticity changed patterns of covariance among morphological characters. These findings suggest our ability to make inferences about patterns of divergence based on correlations of traits in extant populations may be limited if novel environments not only induce plasticity in multiple traits, but also change the correlations among the traits.


Asunto(s)
Ambiente , Variación Genética , Fenotipo , Poecilia/genética , Animales , Evolución Biológica , Femenino , Cadena Alimentaria , Masculino , Poecilia/crecimiento & desarrollo , Trinidad y Tobago
9.
Integr Comp Biol ; 53(6): 975-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23784701

RESUMEN

Novel environments often impose directional selection for a new phenotypic optimum. Novel environments, however, can also change the distribution of phenotypes exposed to selection by inducing phenotypic plasticity. Plasticity can produce phenotypes that either align with or oppose the direction of selection. When plasticity and selection are parallel, plasticity is considered adaptive because it provides a better pairing between the phenotype and the environment. If the plastic response is incomplete and falls short of producing the optimum phenotype, synergistic selection can lead to genetic divergence and bring the phenotype closer to the optimum. In contrast, non-adaptive plasticity should increase the strength of selection, because phenotypes will be further from the local optimum, requiring antagonistic selection to overcome the phenotype-environment mismatch and facilitate adaptive divergence. We test these ideas by documenting predator-induced plasticity for resting metabolic rate and growth rate in populations of the Trinidadian guppy (Poecilia reticulata) adapted to high and low predation. We find reduced metabolic rates and growth rates when cues from a predator are present during development, a pattern suggestive of adaptive and non-adaptive plasticity, respectively. When we compared populations recently transplanted from a high-predation environment into four streams lacking predators, we found evidence for rapid adaptive evolution both in metabolism and growth rate. We discuss the implications for predicting how traits will respond to selection, depending on the type of plasticity they exhibit.


Asunto(s)
Adaptación Biológica/fisiología , Cadena Alimentaria , Modelos Animales , Fenotipo , Poecilia/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Animales , Metabolismo Basal/fisiología , Modelos Lineales , Selección Genética , Trinidad y Tobago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA