Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurotherapeutics ; 19(4): 1313-1328, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831747

RESUMEN

There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.


Asunto(s)
Insulinas , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Receptor IGF Tipo 1/metabolismo , Neuroprotección , Fluconazol/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt , Oxidopamina , Antifúngicos , Ácido D-Aspártico
2.
Lab Chip ; 10(6): 741-7, 2010 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-20221562

RESUMEN

We describe a compartmentalized circular microfluidic platform that enables directed cell placement within defined microenvironments for the study of axon-glia interactions. The multi-compartment platform consists of independent units of radial microchannel arrays that fluidically isolate somal from axonal compartments. Fluidic access ports punched near the microchannels allow for direct pipetting of cells into the device. Adjacent somal or axonal compartments can be readily merged so that independent groups of neurons or axons can be maintained in either separate or uniform microenvironments. We demonstrate three distinct modes of directed cell placement in this device, to suit varying experimental needs for the study of axon-glia interactions: (1) centrifugation of the circular platform can result in a two-fold increase in axonal throughput in microchannels and provides a new technique to establish axon-glia interactions; (2) microstencils can be utilized to directly place glial cells within areas of interest; and (3) intimate axon-glia co-culture can be attained via standard pipetting techniques. We take advantage of this microfluidic platform to demonstrate a two-fold preferential accumulation of microglia specifically near injured CNS axons, an event implicated in the maintenance and progression of a number of chronic neuroinflammatory and neurodegenerative diseases.


Asunto(s)
Axones/fisiología , Comunicación Celular/fisiología , Separación Celular/instrumentación , Técnicas de Cocultivo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Neuroglía/fisiología , Animales , Células Cultivadas , Diseño de Equipo , Análisis de Falla de Equipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA