Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(2): 135-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932813

RESUMEN

The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.


Asunto(s)
Ritmo Circadiano/inmunología , Inflamación/metabolismo , Neutrófilos/metabolismo , Neumonía/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Humanos , Inflamación/inmunología , Ratones , Neutrófilos/inmunología , Neumonía/complicaciones , Neumonía/inmunología , Proteoma/inmunología , Proteoma/metabolismo , Síndrome de Dificultad Respiratoria/inmunología
2.
Nature ; 618(7964): 365-373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225978

RESUMEN

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.


Asunto(s)
Ácidos Grasos , Glucosa , Corazón , Leche Humana , Ácido gammalinolénico , Femenino , Humanos , Recién Nacido , Embarazo , Cromatina/genética , Ácidos Grasos/metabolismo , Ácido gammalinolénico/metabolismo , Ácido gammalinolénico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Corazón/crecimiento & desarrollo , Homeostasis , Técnicas In Vitro , Leche Humana/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores X Retinoide/metabolismo , Factores de Transcripción/metabolismo
3.
Nature ; 586(7828): 287-291, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32728214

RESUMEN

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Asunto(s)
Transporte de Electrón , Hipoxia/metabolismo , Mitocondrias/metabolismo , Sistemas de Mensajero Secundario , Sodio/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosfatos de Calcio/metabolismo , Línea Celular Tumoral , Precipitación Química , Humanos , Masculino , Fluidez de la Membrana , Ratones Endogámicos C57BL , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
4.
Nature ; 568(7753): 557-560, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971822

RESUMEN

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Asunto(s)
Carcinogénesis/patología , Ciclo Celular , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Hígado/enzimología , Hígado/patología , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Anciano , Animales , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/patología , Humanos , Hígado/cirugía , Neoplasias Hepáticas/inducido químicamente , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Piridonas/farmacología , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Homología de Secuencia , Especificidad por Sustrato
6.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236094

RESUMEN

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Asunto(s)
Fragilidad , Cardiopatías , Hipertensión Pulmonar , Adulto , Animales , ADN Mitocondrial/genética , Fragilidad/patología , Cardiopatías/patología , Heteroplasmia , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Mitocondrias/genética
7.
Small ; 19(51): e2207658, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37046181

RESUMEN

During the response to different stress conditions, damaged cells react in multiple ways, including the release of a diverse cocktail of metabolites. Moreover, secretomes from dying cells can contribute to the effectiveness of anticancer therapies and can be exploited as predictive biomarkers. The nature of the stress and the resulting intracellular responses are key determinants of the secretome composition, but monitoring such processes remains technically arduous. Hence, there is growing interest in developing tools for noninvasive secretome screening. In this regard, it has been previously shown that the relative concentrations of relevant metabolites can be traced by surface-enhanced Raman scattering (SERS), thereby allowing label-free biofluid interrogation. However, conventional SERS approaches are insufficient to tackle the requirements imposed by high-throughput modalities, namely fast data acquisition and automatized analysis. Therefore, machine learning methods were implemented to identify cell secretome variations while extracting standard features for cell death classification. To this end, ad hoc microfluidic chips were devised, to readily conduct SERS measurements through a prototype relying on capillary pumps made of filter paper, which eventually would function as the SERS substrates. The developed strategy may pave the way toward a faster implementation of SERS into cell secretome classification, which can be extended even to laboratories lacking highly specialized facilities.


Asunto(s)
Secretoma , Espectrometría Raman , Espectrometría Raman/métodos , Microfluídica , Biomarcadores
8.
Small ; 19(31): e2206442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840669

RESUMEN

Carbon Dots (CDs) are luminescent quasi-spherical nanoparticles, possessing water solubility, high biocompatibility, and tunable chemical and physical properties for a wide range of applications, including nanomedicine and theranostics. The evaluation of new purification criteria, useful to achieve more reliable CDs, free from the interference of artifacts, is currently an object of debate in the field. Here, new CDs doped with gadolinium (Gd (III)), named Gd@CNDs, are presented as multifunctional probes for Magnetic Resonance Imaging (MRI). This new system is a case of study, to evaluate and/or combine different purification strategies, as a crucial approach to generate CDs with a better performance. Indeed, these new amorphous Gd@CNDs display good homogeneity, and they are free from emissive side products. Gd@CNDs (7-10 nm) contain 7% of Gd (III) w/w, display suitable and stable longitudinal relaxivity (r1 ) and with emissive behavior, therefore potentially useful for both MR and fluorescence imaging. They show good biocompatibility in both cellular and in vivo studies, cell permeability, and the ability to generate contrast in cellular pellets. Finally, MRI recording T1 -weighted images on mice after intravenous injection of Gd@CNDs, show signal enhancement in the liver, spleen, and kidney 30 min postinjection.


Asunto(s)
Medios de Contraste , Gadolinio , Animales , Ratones , Medios de Contraste/química , Gadolinio/química , Carbono/química , Imagen por Resonancia Magnética/métodos , Imagen Óptica
9.
Small ; 18(16): e2106570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35263020

RESUMEN

Manganese ferrite nanoparticles display interesting features in bioimaging and catalytic therapies. They have been recently used in theranostics as contrast agents in magnetic resonance imaging (MRI), and as catalase-mimicking nanozymes for hypoxia alleviation. These promising applications encourage the development of novel synthetic procedures to enhance the bioimaging and catalytic properties of these nanomaterials simultaneously. Herein, a cost-efficient synthetic microwave method is developed to manufacture ultrasmall manganese ferrite nanoparticles as advanced multimodal contrast agents in MRI and positron emission tomography (PET), and improved nanozymes. Such a synthetic method allows doping ferrites with Mn in a wide stoichiometric range (Mnx Fe3-x O4 , 0.1 ≤ x ≤ 2.4), affording a library of nanoparticles with different magnetic relaxivities and catalytic properties. These tuned magnetic properties give rise to either positive or dual-mode MRI contrast agents. On the other hand, higher levels of Mn doping enhance the catalytic efficiency of the resulting nanozymes. Finally, through their intracellular catalase-mimicking activity, these ultrasmall manganese ferrite nanoparticles induce an unprecedented tumor growth inhibition in a breast cancer murine model. All of these results show the robust characteristics of these nanoparticles for nanobiotechnological applications.


Asunto(s)
Medios de Contraste , Nanopartículas , Animales , Catalasa , Compuestos Férricos , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso , Ratones
10.
Nature ; 535(7613): 561-5, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27383793

RESUMEN

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic,metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation,insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Asunto(s)
Envejecimiento/genética , Núcleo Celular/genética , ADN Mitocondrial/genética , Variación Genética/genética , Metabolismo/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Genoma Mitocondrial/genética , Haplotipos , Insulina/metabolismo , Longevidad/genética , Masculino , Metabolismo/fisiología , Metabolómica , Ratones , Ratones Congénicos , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Obesidad/genética , Obesidad/metabolismo , Fenotipo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Acortamiento del Telómero , Transcriptoma , Respuesta de Proteína Desplegada
11.
FASEB J ; 34(10): 13626-13640, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32780919

RESUMEN

Many probiotics that affect gut microbial ecology have been shown to produce beneficial effects on renin-angiotensin-dependent rodent models and human hypertension. We hypothesized that Bifidobacterium breve CECT7263 (BFM) would attenuate hypertension in deoxycorticosterone acetate (DOCA)-salt rats, a renin-independent model of hypertension. Rats were randomly divided into five groups: control, DOCA-salt, treated DOCA-salt-BFM, treated DOCA-salt-butyrate, and treated DOCA-salt-acetate, for 5 weeks. BFM prevented the increase in systolic blood pressure, cardiac weight, and renal damage induced by DOCA-salt. BFM increased acetate-producing bacterial population and gut acetate levels, improved colonic integrity, normalized endotoxemia, plasma trimethylamine (TMA) levels, and restored the Th17 and Treg content in mesenteric lymph nodes and aorta. Furthermore, BFM improved nitric oxide-dependent vasorelaxation induced by acetylcholine in aortic rings and reduced NADPH oxidase activity in DOCA-salt animals. These protective effects were mimicked by acetate, but not by butyrate supplementation. These data demonstrate that BFM induces changes in gut microbiota linked with attenuation of endothelial dysfunction and increase in blood pressure in this low-renin form of hypertension. These beneficial effects seem to be mediated by increased acetate and reduced TMA production by gut microbiota, thus, improving gut integrity and restoring Th17/Tregs polarization and endotoxemia.


Asunto(s)
Bifidobacterium breve , Presión Sanguínea , Microbioma Gastrointestinal , Hipertensión/terapia , Probióticos/uso terapéutico , Vasodilatación , Animales , Acetato de Desoxicorticosterona , Hipertensión/inducido químicamente , Masculino , Ratas , Ratas Wistar
12.
Crit Care ; 25(1): 390, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34781986

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by lung inflammation and pulmonary edema. Coronavirus disease 2019 (COVID-19) is associated with ARDS in the more severe cases. This study aimed to compare the specificity of the metabolic alterations induced by COVID-19 or Influenza A pneumonia (IAP) in ARDS. METHODS: Eighteen patients with ARDS due to COVID-19 and twenty patients with ARDS due to IAP, admitted to the intensive care unit. ARDS was defined as in the American-European Consensus Conference. As compared with patients with COVID-19, patients with IAP were younger and received more often noradrenaline to maintain a mean arterial pressure > 65 mm Hg. Serum samples were analyzed by Nuclear Magnetic Resonance Spectroscopy. Multivariate Statistical Analyses were used to identify metabolic differences between groups. Metabolic pathway analysis was performed to identify the most relevant pathways involved in ARDS development. RESULTS: ARDS due to COVID-19 or to IAP induces a different regulation of amino acids metabolism, lipid metabolism, glycolysis, and anaplerotic metabolism. COVID-19 causes a significant energy supply deficit that induces supplementary energy-generating pathways. In contrast, IAP patients suffer more marked inflammatory and oxidative stress responses. The classificatory model discriminated against the cause of pneumonia with a success rate of 100%. CONCLUSIONS: Our findings support the concept that ARDS is associated with a characteristic metabolomic profile that may discriminate patients with ARDS of different etiologies, being a potential biomarker for the diagnosis, prognosis, and management of this condition.


Asunto(s)
COVID-19/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Adulto , Anciano , COVID-19/complicaciones , Femenino , Humanos , Gripe Humana/complicaciones , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/virología
13.
J Nucl Cardiol ; 27(4): 1249-1260, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927149

RESUMEN

BACKGROUND: Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs. METHODS: 8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps. RESULTS: MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001). CONCLUSION: 68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.


Asunto(s)
Circulación Coronaria/fisiología , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Animales , Autorradiografía , Estudios de Factibilidad , Femenino , Masculino , Porcinos
14.
Int J Mol Sci ; 21(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375361

RESUMEN

In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/genética , Hipertensión Pulmonar/terapia , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico , Tratamiento con ARN de Interferencia , Nanomedicina Teranóstica , Animales , Biomarcadores , Sistemas de Liberación de Medicamentos , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/terapia , Nanomedicina , Nanotecnología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , ARN no Traducido/genética , ARN no Traducido/uso terapéutico , Tratamiento con ARN de Interferencia/métodos
15.
Am J Physiol Renal Physiol ; 316(1): F54-F62, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379100

RESUMEN

The aim of this study is the identification of metabolomic biomarkers of sepsis and sepsis-induced acute kidney injury (AKI) in an experimental model. Pigs were anesthetized and monitored to measure mean arterial pressure (MAP), systemic blood flow (QT), mean pulmonary arterial pressure, renal artery blood flow (QRA), renal cortical blood flow (QRC), and urine output (UO). Sepsis was induced at t = 0 min by the administration of live Escherichia coli ( n = 6) or saline ( n = 8). At t = 300 min, animals were killed. Renal tissue, urine, and serum samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Principal component analyses were performed on the processed NMR spectra to highlight kidney injury biomarkers. Sepsis was associated with decreased QT and MAP and decreased QRA, QRC, and UO. Creatinine serum concentration and neutrophil gelatinase-associated lipocalin (NGAL) serum and urine concentrations increased. NMR-based metabolomics analysis found metabolic differences between control and septic animals: 1) in kidney tissue, increased lactate and nicotinuric acid and decreased valine, aspartate, glucose, and threonine; 2) in urine, increased isovaleroglycine, aminoadipic acid, N-acetylglutamine, N-acetylaspartate, and ascorbic acid and decreased myoinositol and phenylacetylglycine; and 3) in serum, increased lactate, alanine, pyruvate, and glutamine and decreased valine, glucose, and betaine concentrations. The concentration of several metabolites altered in renal tissue and urine samples from septic animals showed a significant correlation with markers of AKI (i.e., creatinine and NGAL serum concentrations). NMR-based metabolomics is a potentially useful tool for biomarker identification of sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Metabolómica/métodos , Sepsis/complicaciones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Biomarcadores/sangre , Biomarcadores/orina , Modelos Animales de Enfermedad , Hemodinámica , Riñón/patología , Riñón/fisiopatología , Masculino , Espectroscopía de Protones por Resonancia Magnética , Sus scrofa
16.
MAGMA ; 32(1): 79-87, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30778714

RESUMEN

OBJECTIVE: Given the growing interest in fluorine, it is necessary to develop new multi-tuned RF coils. Therefore, our objective is to design a simple and versatile double-tuned RF coil that can be used as a transmitter and receiver double-tuned coil (1H and 19F) or as transmitter-only double-tuned coil. MATERIALS AND METHODS: A high-pass eight-element birdcage coil was built for 1H and 19F for a 7 T scanner. PIN diodes and cable traps to block unwanted common mode currents in cables were introduced to confer more flexibility to the coil. S-parameters and quality factor were measured in workbench and signal to noise ratio as well as signal intensity profiles in imaging experiments. RESULTS: Bench measurements show S11 values less than - 33 dB, S21 lower than - 13 dB and quality factors ratio of the order of 1.8 that are in agreement with good performances of a RF coil, as well as values of - 39 dB for 19F and - 30 dB for 1H as good detuning values. Signal intensity profiles prove excellent homogeneity at 1H and 19F. DISCUSSION: We present a simple structure of a double-tuned high-pass birdcage coil tuned to 1H and 19F that shows a great uniformity and sensitivity for 19F.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/instrumentación , Imagen por Resonancia Magnética con Fluor-19/métodos , Flúor/química , Hidrógeno/química , Protones , Animales , Capacidad Eléctrica , Diseño de Equipo , Fantasmas de Imagen , Ondas de Radio , Ratas , Relación Señal-Ruido
17.
Nanomedicine ; 17: 26-35, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30654185

RESUMEN

The importance of atherosclerosis is driving research to create improved diagnostic tools based on molecular imaging. Pretargeted imaging is the use of bioorthogonal probes that selectively accumulate upon reaction with a pre-modified biomolecule in vivo. To date, this very promising approach has not been applied to atherosclerosis. Neither has been the use of a single nano-radiomaterial for PET / T1-MR imaging of atherosclerosis. Here, we synthesized bioorthogonal nano-radiomaterials for in vivo pretargeted molecular imaging in a mouse model of atherosclerosis. Based on tetrazine-ligation, these functionalized 68Ga iron oxide nano-radiomaterials provide simultaneous PET and T1-MRI signals and selectively accumulate in atherosclerotic plaques in mice sequentially injected with trans-cyclooctene-modified antibodies against oxidized LDL followed by the hybrid nano-radiomaterial. Our results demonstrate the ability of this approach to unambiguously detect atherosclerosis. Furthermore, we show the first example of how hybrid imaging can be used for pretargeted bioorthogonal molecular imaging with nanomaterials.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Animales , Compuestos Férricos/análisis , Radioisótopos de Galio/análisis , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos C57BL , Modelos Moleculares , Imagen Molecular/métodos , Nanoestructuras/análisis , Tomografía de Emisión de Positrones/métodos
18.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L711-L723, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30136611

RESUMEN

Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries. K+ currents were recorded in freshly isolated pulmonary artery smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using quantitative RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized than those from WT. Whereas voltage-gated K+ channel 1.5 (Kv1.5) currents were preserved, pH-sensitive noninactivating background currents ( IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L-364,373 assessed by vascular reactivity and patch-clamp experimental approaches. Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.


Asunto(s)
VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Hipertrofia Ventricular Derecha/patología , Músculo Liso Vascular/patología , Canales de Potasio con Entrada de Voltaje/metabolismo , Arteria Pulmonar/patología , Transgenes/fisiología , Animales , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Hipertrofia Ventricular Derecha/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Arteria Pulmonar/metabolismo , Vasoconstricción
20.
Nanomedicine ; 14(3): 643-650, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29317346

RESUMEN

ApoB-100 and Phosphatidylcholine-specific phospholipase C (PC-PLC) are important contributors to atherosclerosis development. ApoB-100 is the main structural protein of LDL, being directly associated with atherosclerosis plaque generation. PC-PLC is highly expressed in atherosclerosis lesions and contributes to their progression. We show how phosphatidylcholine-coated nanomicelles can be used for specific characterisation of atherosclerosis plaque. Results show that ApoB-100 in the protein corona of the nanomicelle targets the particles to atherosclerotic areas in apolipoprotein E-/- mice. Furthermore, PC-PLC selectively removes the polar heads from the phospholipid coating of the nanomicelles leading to their accumulation. To fully characterise the behaviour of the nanomicelles, we developed multimodal probes using a nanoemulsion step. Hybrid imaging revealed plaque accumulation of the nanomicelles and colocalisation with PC-PLC expression and ApoB-100 in the plaque. This study shows how protein corona composition and enzyme-driven nanomaterial accumulation can be used for detection of atherosclerosis.


Asunto(s)
Apolipoproteínas E/fisiología , Compuestos Férricos/química , Micelas , Nanocompuestos/química , Placa Aterosclerótica/metabolismo , Corona de Proteínas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Apolipoproteína B-100/metabolismo , Ratones , Ratones Noqueados para ApoE , Nanocompuestos/administración & dosificación , Placa Aterosclerótica/patología , Corona de Proteínas/química , Fosfolipasas de Tipo C/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA