Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7869): 713-717, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34192736

RESUMEN

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/prevención & control , Europa (Continente)/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Locomoción , Filogenia , Filogeografía , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Factores de Tiempo , Viaje/estadística & datos numéricos
2.
Nature ; 585(7825): 410-413, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32365354

RESUMEN

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.


Asunto(s)
Trazado de Contacto/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Desinfección de las Manos/métodos , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Aislamiento Social , Viaje/legislación & jurisprudencia , COVID-19 , China/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Neumonía Viral/transmisión , Medición de Riesgo , Factores de Tiempo
3.
Clin Infect Dis ; 75(1): e234-e240, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34549275

RESUMEN

BACKGROUND: Modern transportation plays a key role in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and new variants. However, little is known about the exact transmission risk of the virus on airplanes. METHODS: Using the itinerary and epidemiological data of coronavirus disease 2019 (COVID-19) cases and close contacts on domestic airplanes departing from Wuhan city in China before the lockdown on 23 January 2020, we estimated the upper and lower bounds of overall transmission risk of COVID-19 among travelers. RESULTS: In total, 175 index cases were identified among 5797 passengers on 177 airplanes. The upper and lower attack rates (ARs) of a seat were 0.60% (34/5622, 95% confidence interval [CI] .43-.84%) and 0.33% (18/5400, 95% CI .21-.53%), respectively. In the upper- and lower-bound risk estimates, each index case infected 0.19 (SD 0.45) and 0.10 (SD 0.32) cases, respectively. The seats immediately adjacent to the index cases had an AR of 9.2% (95% CI 5.7-14.4%), with a relative risk 27.8 (95% CI 14.4-53.7) compared to other seats in the upper limit estimation. The middle seat had the highest AR (0.7%, 95% CI .4%-1.2%). The upper-bound AR increased from 0.7% (95% CI 0.5%-1.0%) to 1.2% (95% CI .4-3.3%) when the co-travel time increased from 2.0 hours to 3.3 hours. CONCLUSIONS: The ARs among travelers varied by seat distance from the index case and joint travel time, but the variation was not significant between the types of aircraft. The overall risk of SARS-CoV-2 transmission during domestic travel on planes was relatively low. These findings can improve our understanding of COVID-19 spread during travel and inform response efforts in the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , China/epidemiología , Control de Enfermedades Transmisibles , Humanos , Pandemias
4.
Int J Appl Earth Obs Geoinf ; 106: 102649, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35110979

RESUMEN

Governments worldwide have rapidly deployed non-pharmaceutical interventions (NPIs) to mitigate the COVID-19 pandemic. However, the effect of these individual NPI measures across space and time has yet to be sufficiently assessed, especially with the increase of policy fatigue and the urge for NPI relaxation in the vaccination era. Using the decay ratio in the suppression of COVID-19 infections and multi-source big data, we investigated the changing performance of different NPIs across waves from global and regional levels (in 133 countries) to national and subnational (in the United States of America [USA]) scales before the implementation of mass vaccination. The synergistic effectiveness of all NPIs for reducing COVID-19 infections declined along waves, from 95.4% in the first wave to 56.0% in the third wave recently at the global level and similarly from 83.3% to 58.7% at the USA national level, while it had fluctuating performance across waves on regional and subnational scales. Regardless of geographical scale, gathering restrictions and facial coverings played significant roles in epidemic mitigation before the vaccine rollout. Our findings have important implications for continued tailoring and implementation of NPI strategies, together with vaccination, to mitigate future COVID-19 waves, caused by new variants, and other emerging respiratory infectious diseases.

5.
Malar J ; 18(1): 107, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922301

RESUMEN

BACKGROUND: Historically, malaria had been a widespread disease in China. A national plan was launched in China in 2010, aiming to eliminate malaria by 2020. In 2017, no indigenous cases of malaria were detected in China for the first time. To provide evidence for precise surveillance and response to achieve elimination goal, a comprehensive study is needed to determine the changing epidemiology of malaria and the challenges towards elimination. METHODS: Using malaria surveillance data from 2011 to 2016, an integrated series of analyses was conducted to elucidate the changing epidemiological features of autochthonous and imported malaria, and the spatiotemporal patterns of malaria importation from endemic countries. RESULTS: From 2011 to 2016, a total of 21,062 malaria cases with 138 deaths were reported, including 91% were imported and 9% were autochthonous. The geographic distribution of local transmission have shrunk dramatically, but there were still more than 10 counties reporting autochthonous cases in 2013-2016, particularly in counties bordering with countries in South-East Asia. The importation from 68 origins countries had an increasing annual trend from Africa but decreasing importation from Southeast Asia. Four distinct communities have been identified in the importation networks with the destinations in China varied by origin and species. CONCLUSIONS: China is on the verge of malaria elimination, but the residual transmission in border regions and the threats of importation from Africa and Southeast Asia are the key challenges to achieve and maintain malaria elimination. Efforts from China are also needed to help malaria control in origin countries and reduce the risk of introduced transmission.


Asunto(s)
Erradicación de la Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Malaria/epidemiología , Malaria/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China/epidemiología , Enfermedades Transmisibles Importadas/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Malaria/transmisión , Masculino , Persona de Mediana Edad , Análisis Espacio-Temporal , Topografía Médica , Adulto Joven
6.
Int J Health Geogr ; 17(1): 28, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30049275

RESUMEN

BACKGROUND: Human mobility is fundamental to understanding global issues in the health and social sciences such as disease spread and displacements from disasters and conflicts. Detailed mobility data across spatial and temporal scales are difficult to collect, however, with movements varying from short, repeated movements to work or school, to rare migratory movements across national borders. While typical sources of mobility data such as travel history surveys and GPS tracker data can inform different typologies of movement, almost no source of readily obtainable data can address all types of movement at once. METHODS: Here, we collect Google Location History (GLH) data and examine it as a novel source of information that could link fine scale mobility with rare, long distance and international trips, as it uniquely spans large temporal scales with high spatial granularity. These data are passively collected by Android smartphones, which reach increasingly broad audiences, becoming the most common operating system for accessing the Internet worldwide in 2017. We validate GLH data against GPS tracker data collected from Android users in the United Kingdom to assess the feasibility of using GLH data to inform human movement. RESULTS: We find that GLH data span very long temporal periods (over a year on average in our sample), are spatially equivalent to GPS tracker data within 100 m, and capture more international movement than survey data. We also find GLH data avoid compliance concerns seen with GPS trackers and bias in self-reported travel, as GLH is passively collected. We discuss some settings where GLH data could provide novel insights, including infrastructure planning, infectious disease control, and response to catastrophic events, and discuss advantages and disadvantages of using GLH data to inform human mobility patterns. CONCLUSIONS: GLH data are a greatly underutilized and novel dataset for understanding human movement. While biases exist in populations with GLH data, Android phones are becoming the first and only device purchased to access the Internet and various web services in many middle and lower income settings, making these data increasingly appropriate for a wide range of scientific questions.


Asunto(s)
Teléfono Celular , Recolección de Datos/métodos , Sistemas de Información Geográfica , Mapeo Geográfico , Viaje , Teléfono Celular/estadística & datos numéricos , Recolección de Datos/estadística & datos numéricos , Sistemas de Información Geográfica/estadística & datos numéricos , Humanos , Viaje/estadística & datos numéricos
7.
PLoS Comput Biol ; 12(4): e1004846, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27043913

RESUMEN

Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.


Asunto(s)
Malaria/epidemiología , Malaria/transmisión , Modelos Biológicos , Teléfono Celular/estadística & datos numéricos , Biología Computacional , Interpretación Estadística de Datos , Migración Humana , Humanos , Malaria/prevención & control , Namibia/epidemiología , Prevalencia
8.
Malar J ; 16(1): 359, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886710

RESUMEN

BACKGROUND: As Swaziland progresses towards national malaria elimination, the importation of parasites into receptive areas becomes increasingly important. Imported infections have the potential to instigate local transmission and sustain local parasite reservoirs. METHODS: Travel histories from Swaziland's routine surveillance data from January 2010 to June 2014 were extracted and analysed. The travel patterns and demographics of rapid diagnostic test (RDT)-confirmed positive cases identified through passive and reactive case detection (RACD) were analysed and compared to those found to be negative through RACD. RESULTS: Of 1517 confirmed cases identified through passive surveillance, 67% reported travel history. A large proportion of positive cases reported domestic or international travel history (65%) compared to negative cases (10%). The primary risk factor for malaria infection in Swaziland was shown to be travel, more specifically international travel to Mozambique by 25- to 44-year old males, who spent on average 28 nights away. Maputo City, Inhambane and Gaza districts were the most likely travel destinations in Mozambique, and 96% of RDT-positive international travellers were either Swazi (52%) or Mozambican (44%) nationals, with Swazis being more likely to test negative. All international travellers were unlikely to have a bed net at home or use protection of any type while travelling. Additionally, paths of transmission, important border crossings and means of transport were identified. CONCLUSION: Results from this analysis can be used to direct national and well as cross-border targeting of interventions, over space, time and by sub-population. The results also highlight that collaboration between neighbouring countries is needed to tackle the importation of malaria at the regional level.


Asunto(s)
Malaria/epidemiología , Malaria/transmisión , Viaje , Adulto , Control de Enfermedades Transmisibles/estadística & datos numéricos , Emigración e Inmigración , Monitoreo Epidemiológico , Esuatini/epidemiología , Femenino , Humanos , Malaria/prevención & control , Masculino , Mozambique , Factores de Riesgo , Estaciones del Año , Sudáfrica , Viaje/estadística & datos numéricos
9.
Int J Health Geogr ; 16(1): 25, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724433

RESUMEN

BACKGROUND: Household survey data are collected by governments, international organizations, and companies to prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, census data are often outdated or inaccurate. This paper describes how gridded population data might instead be used as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex household surveys with gridded population data. With a gridded population dataset and geographic boundary of the study area, GridSample allows a two-step process to sample "seed" cells with probability proportionate to estimated population size, then "grows" PSUs until a minimum population is achieved in each PSU. The algorithm permits stratification and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results. RESULTS: We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda's 30 districts, and oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU population of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while GridSample reallocated rural-to-urban PSUs across all districts. CONCLUSIONS: Gridded population sampling is a promising alternative to typical census-based sampling when census data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-probability sampling (e.g. random-walk, "spin-the-pen"), and random sampling of households. Gridded population sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population sampling. The GridSample R algorithm can be used to forward this research agenda.


Asunto(s)
Composición Familiar , Encuestas Epidemiológicas/métodos , Vigilancia de la Población/métodos , Censos , Encuestas Epidemiológicas/estadística & datos numéricos , Humanos , Densidad de Población , Rwanda/epidemiología
10.
Malar J ; 15(1): 273, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27169470

RESUMEN

BACKGROUND: Numerous countries around the world are approaching malaria elimination. Until global eradication is achieved, countries that successfully eliminate the disease will contend with parasite reintroduction through international movement of infected people. Human-mediated parasite mobility is also important within countries near elimination, as it drives parasite flows that affect disease transmission on a subnational scale. METHODS: Movement patterns exhibited in census-based migration data are compared with patterns exhibited in a mobile phone data set from Haiti to quantify how well migration data predict short-term movement patterns. Because short-term movement data were unavailable for Mesoamerica, a logistic regression model fit to migration data from three countries in Mesoamerica is used to predict flows of infected people between subnational administrative units throughout the region. RESULTS: Population flows predicted using census-based migration data correlated strongly with mobile phone-derived movements when used as a measure of relative connectivity. Relative population flows are therefore predicted using census data across Mesoamerica, informing the areas that are likely exporters and importers of infected people. Relative population flows are used to identify community structure, useful for coordinating interventions and elimination efforts to minimize importation risk. Finally, the ability of census microdata inform future intervention planning is discussed in a country-specific setting using Costa Rica as an example. CONCLUSIONS: These results show long-term migration data can effectively predict the relative flows of infected people to direct malaria elimination policy, a particularly relevant result because migration data are generally easier to obtain than short-term movement data such as mobile phone records. Further, predicted relative flows highlight policy-relevant population dynamics, such as major exporters across the region, and Nicaragua and Costa Rica's strong connection by movement of infected people, suggesting close coordination of their elimination efforts. Country-specific applications are discussed as well, such as predicting areas at relatively high risk of importation, which could inform surveillance and treatment strategies.


Asunto(s)
Censos , Erradicación de la Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Migración Humana , Malaria/prevención & control , Malaria/transmisión , Costa Rica , Haití , Política de Salud , Humanos , Malaria/epidemiología , Nicaragua/epidemiología , Viaje
11.
Popul Health Metr ; 14: 35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27777514

RESUMEN

BACKGROUND: Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. METHODS: We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. RESULTS: We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. CONCLUSION: The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.


Asunto(s)
Malaria/epidemiología , Dinámica Poblacional , Vigilancia de la Población/métodos , Estaciones del Año , Viaje , Teléfono Celular , Humanos , Incidencia , Namibia , Dinámica Poblacional/estadística & datos numéricos , Migrantes
12.
J Theor Biol ; 353: 142-56, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24641821

RESUMEN

Following over two decades of research, the malaria vaccine candidate RTS,S has reached the final stages of vaccine trials, demonstrating an efficacy of roughly 50% in young children. Regions with high malaria prevalence tend to have high levels of naturally acquired immunity (NAI) to severe malaria; NAI is caused by repeated exposure to infectious bites and results in large asymptomatic populations. To address concerns about how these vaccines will perform in regions with existing NAI, we developed a simple malaria model incorporating vaccination and NAI. Typically, if the basic reproduction number (R0) for malaria is greater than unity, the disease will persist; otherwise, the disease will become extinct. However, analysis of this model revealed that NAI, compounded by a subpopulation with only partial protection to malaria, may render vaccination efforts ineffective and potentially detrimental to malaria control, by increasing R0 and increasing the likelihood of malaria persistence even when R0<1. The likelihood of this scenario increases when non-immune infected individuals are treated disproportionately compared with partially immune individuals - a plausible scenario since partially immune individuals are more likely to be asymptomatically infected. Consequently, we argue that active case-detection of asymptomatic infections is a critical component of an effective malaria control program. We then investigated optimal vaccination and bednet control programs under two endemic settings with varying levels of naturally acquired immunity: a typical setting under which prevalence decays when R0<1, and a setting in which subthreshold endemic equilibria exist. A qualitative comparison of the optimal control results under the first setting revealed that the optimal policy differs depending on whether the goal is to reduce total morbidity, or to reduce clinical infections. Furthermore, this comparison dictates that control programs should place less effort in vaccination as the level of NAI in a population, and as disease prevalence, increases. In the second setting, we demonstrated that the optimal policy is able to confer long-term benefits with a 10-year control program by pushing the system into a new state where the disease-free equilibrium becomes the attracting equilibrium. While this result suggests that one can theoretically achieve long-term benefits with a short-term strategy, we illustrate that in this second setting, a small environmental change, or the introduction of new cases via immigration, places the population at high risk for a malaria epidemic.


Asunto(s)
Inmunidad Innata , Malaria/inmunología , Malaria/prevención & control , Modelos Biológicos , Mosquiteros , Vacunación , Enfermedades Endémicas/prevención & control , Humanos , Vacunas contra la Malaria , Análisis Numérico Asistido por Computador
13.
medRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38946988

RESUMEN

Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical models coupled with distributed lag non-linear models (DLNM) within the integrated nested Laplace approximate (INLA) package in R to examine the lag-response associations of drivers of COVID-19 transmission in urban, suburban, and rural districts in India during two pandemic waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-pandemic levels was associated with an increase in relative risk of COVID-19 transmission during the Delta wave of transmission. This increased mobility, coupled with reduced stringency in public intervention policy and the emergence of the Delta variant, were the main contributors to the high COVID-19 transmission peak in India in April 2021. During both pandemic waves in India, reduction in human mobility, higher stringency of interventions, and climate factors (temperature and precipitation) had 2-week lag-response impacts on the R t of COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across urban, rural and suburban areas. With the increased likelihood of emergent novel infections and disease outbreaks under a changing global climate, providing a framework for understanding the lagged impact of spatiotemporal drivers of infection transmission will be crucial for informing interventions.

14.
Health Aff (Millwood) ; 42(12): 1637-1646, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048504

RESUMEN

In the first two years of the COVID-19 pandemic, per capita mortality varied by more than a hundredfold across countries, despite most implementing similar nonpharmaceutical interventions. Factors such as policy stringency, gross domestic product, and age distribution explain only a small fraction of mortality variation. To address this puzzle, we built on a previously validated pandemic model in which perceived risk altered societal responses affecting SARS-CoV-2 transmission. Using data from more than 100 countries, we found that a key factor explaining heterogeneous death rates was not the policy responses themselves but rather variation in responsiveness. Responsiveness measures how sensitive communities are to evolving mortality risks and how readily they adopt nonpharmaceutical interventions in response, to curb transmission. We further found that responsiveness correlated with two cultural constructs across countries: uncertainty avoidance and power distance. Our findings show that more responsive adoption of similar policies saves many lives, with important implications for the design and implementation of responses to future outbreaks.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias/prevención & control , Políticas , Incertidumbre
15.
Nat Commun ; 14(1): 5270, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644012

RESUMEN

Targeted public health interventions for an emerging epidemic are essential for preventing pandemics. During 2020-2022, China invested significant efforts in strict zero-COVID measures to contain outbreaks of varying scales caused by different SARS-CoV-2 variants. Based on a multi-year empirical dataset containing 131 outbreaks observed in China from April 2020 to May 2022 and simulated scenarios, we ranked the relative intervention effectiveness by their reduction in instantaneous reproduction number. We found that, overall, social distancing measures (38% reduction, 95% prediction interval 31-45%), face masks (30%, 17-42%) and close contact tracing (28%, 24-31%) were most effective. Contact tracing was crucial in containing outbreaks during the initial phases, while social distancing measures became increasingly prominent as the spread persisted. In addition, infections with higher transmissibility and a shorter latent period posed more challenges for these measures. Our findings provide quantitative evidence on the effects of public-health measures for zeroing out emerging contagions in different contexts.


Asunto(s)
COVID-19 , Salud Pública , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control
16.
Res Sq ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014322

RESUMEN

Background: Timely and precise detection of emerging infections is crucial for effective outbreak management and disease control. Human mobility significantly influences infection risks and transmission dynamics, and spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing resources for detecting emerging infections. Methods: Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four spatial sampling approaches to detect emerging infections at the community level. To evaluate the effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and simulated outbreaks under different scenarios of transmissibility, intervention timing, and population density in cities. Results: By leveraging inter-community movement data and initial case locations, the proposed case flow intensity (CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and CTI within communities is imperative for effective detection, particularly for highly contagious infections in densely populated areas. Conclusions: The mobility-based spatial sampling approach can substantially improve the efficiency of community-level testing for detecting emerging infections. It achieves this by reducing the number of individuals screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious diseases in diverse settings.

17.
J Theor Biol ; 303: 1-14, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22525434

RESUMEN

Mathematical models developed for studying malaria dynamics often focus on a single, homogeneous population. However, human movement connects environments with potentially different malaria transmission characteristics. To address the role of human movement and spatial heterogeneity in malaria transmission and malaria control, we consider a simple malaria metapopulation model incorporating two regions, or patches, connected by human movement, with different degrees of malaria transmission in each patch. Using our two-patch model, we calculate and analyze the basic reproduction number, R(0), an epidemiologically important threshold quantity that indicates whether malaria will persist or go extinct in a population. Although R(0) depends on the rates of human movement, we show that R(0) is always bounded between the two quantities R(01) and R(02)-the reproduction numbers for the two patches if isolated. If without migration, the disease is endemic in one patch but not in the other, then the addition of human migration can cause the disease to persist in both patches. This result indicates that regions with low malaria transmission should have an interest in helping to control or eliminate malaria in regions with higher malaria endemicity if human movement connects them. Performing a sensitivity analysis of R(0) and the endemic equilibrium to various parameters in the two-patch model allowed us to determine, under different parameterizations of the model, which patch will be the better target for control measures, and within that patch, what type of control measure should be implemented. In the analysis of R(0), we found that if the extrinsic incubation period is shorter than the average mosquito lifespan, the control measures should be targeted towards reducing the mosquito biting rate. On the other hand, if the extrinsic incubation period is longer than the average mosquito lifespan, control measures targeting the mosquito death rate will be more effective. Intuitively, one might think that resources for malaria control should be allocated to the region with higher malaria transmission. However, our sensitivity analyses indicated that this is not always the case. In fact, if migration into the lower transmission patch is much faster than migration into the higher transmission patch, the lower transmission patch is potentially the better target for malaria control efforts. While human movement between regions poses challenges to malaria control and elimination, if estimates of relevant parameters in the model are known, including migration rates, our results can help inform which region to target and what type of control measure to implement for the greatest success.


Asunto(s)
Malaria/transmisión , Modelos Biológicos , Movimiento , Dinámica Poblacional , Número Básico de Reproducción , Ecosistema , Emigración e Inmigración , Humanos , Malaria/epidemiología , Malaria/prevención & control , Estaciones del Año
18.
Sci Data ; 9(1): 17, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058466

RESUMEN

Public and school holidays have important impacts on population mobility and dynamics across multiple spatial and temporal scales, subsequently affecting the transmission dynamics of infectious diseases and many socioeconomic activities. However, worldwide data on public and school holidays for understanding their changes across regions and years have not been assembled into a single, open-source and multitemporal dataset. To address this gap, an open access archive of data on public and school holidays in 2010-2019 across the globe at daily, weekly, and monthly timescales was constructed. Airline passenger volumes across 90 countries from 2010 to 2018 were also assembled to illustrate the usage of the holiday data for understanding the changing spatiotemporal patterns of population movements.

19.
Nat Commun ; 13(1): 3106, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661759

RESUMEN

Non-pharmaceutical interventions (NPIs) and vaccination are two fundamental approaches for mitigating the coronavirus disease 2019 (COVID-19) pandemic. However, the real-world impact of NPIs versus vaccination, or a combination of both, on COVID-19 remains uncertain. To address this, we built a Bayesian inference model to assess the changing effect of NPIs and vaccination on reducing COVID-19 transmission, based on a large-scale dataset including epidemiological parameters, virus variants, vaccines, and climate factors in Europe from August 2020 to October 2021. We found that (1) the combined effect of NPIs and vaccination resulted in a 53% (95% confidence interval: 42-62%) reduction in reproduction number by October 2021, whereas NPIs and vaccination reduced the transmission by 35% and 38%, respectively; (2) compared with vaccination, the change of NPI effect was less sensitive to emerging variants; (3) the relative effect of NPIs declined 12% from May 2021 due to a lower stringency and the introduction of vaccination strategies. Our results demonstrate that NPIs were complementary to vaccination in an effort to reduce COVID-19 transmission, and the relaxation of NPIs might depend on vaccination rates, control targets, and vaccine effectiveness concerning extant and emerging variants.


Asunto(s)
COVID-19 , Teorema de Bayes , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Vacunación
20.
Sci Rep ; 11(1): 15389, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321509

RESUMEN

Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.


Asunto(s)
Dinámica Poblacional/estadística & datos numéricos , Teléfono Celular , Sistemas de Información Geográfica , Humanos , Kenia , Modelos Estadísticos , Factores de Riesgo , Estaciones del Año , Factores Socioeconómicos , Análisis Espacio-Temporal , Viaje/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA