Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7964): 358-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225987

RESUMEN

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Asunto(s)
Enfermedad Aguda , Enfermedad Crónica , Genes Bacterianos , Oxígeno , Infecciones por Pseudomonas , Pseudomonas aeruginosa , ARN Bacteriano , Animales , Humanos , Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Fibrosis Quística/microbiología , Heridas y Lesiones/microbiología , Ubiquinona/biosíntesis , Anaerobiosis , Genes Bacterianos/genética , Sepsis/complicaciones , Sepsis/microbiología
2.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687006

RESUMEN

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Percepción de Quorum/efectos de los fármacos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Virulencia/efectos de los fármacos , Farmacorresistencia Bacteriana , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Microbiology (Reading) ; 169(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050845

RESUMEN

In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. In vivo biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. In vivo biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.


Asunto(s)
Biopelículas , Infecciones , Humanos , Infecciones/microbiología
4.
PLoS Pathog ; 16(6): e1008511, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555671

RESUMEN

The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection.


Asunto(s)
Microbiota , Polimorfismo de Nucleótido Simple , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Infecciones Estafilocócicas , Staphylococcus epidermidis , Cicatrización de Heridas/genética , Infección de Heridas , Animales , Enfermedad Crónica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Talina/genética , Talina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Infección de Heridas/genética , Infección de Heridas/metabolismo , Infección de Heridas/microbiología , Infección de Heridas/patología
5.
Soft Matter ; 17(25): 6225-6237, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34109345

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Colágeno , Polisacáridos Bacterianos , Viscosidad
6.
Analyst ; 145(24): 8050-8058, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33073791

RESUMEN

Proteases play an essential role in the four sequential but overlapping phases of wound healing: hemostasis, inflammation, proliferation, and remodeling. In chronic wounds, excessive protease secretion damages the newly formed extracellular matrix, thereby delaying or preventing the normal healing process. Peptide-based fluorogenic sensors provide a visual platform to sense and analyze protease activity through changes in the fluorescence intensity. Here, we have developed an integrated microfluidic chip coated with multilayered fluorogenic nanofilms that can directly monitor protease activity. Fluorogenic protease sensors were chemically conjugated to polymer films coated on the surface of parallel microfluidic channels. Capillary flow layer-by-layer (CF-LbL) was used for film assembly and combined with subsequent sensor modification to establish a novel platform sensing technology. The benefits of our platform include facile fabrication and processing, controllable film nanostructure, small sample volume, and high sensitivity. We observed increased fluorescence of the LbL nanofilms when they were exposed to model recombinant proteases, confirming their responsiveness to protease activity. Increases in the nanofilms' fluorescence intensity were also observed during incubation with liquid extracted from murine infected wounds, demonstrating the potential of these films to provide real-time, in situ information about protease activity levels.


Asunto(s)
Nanoestructuras , Animales , Matriz Extracelular , Ratones , Péptido Hidrolasas , Polímeros , Cicatrización de Heridas
7.
Proc Natl Acad Sci U S A ; 115(50): E11771-E11779, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30463950

RESUMEN

Coagulation is an innate defense mechanism intended to limit blood loss and trap invading pathogens during infection. However, Staphylococcus aureus has the ability to hijack the coagulation cascade and generate clots via secretion of coagulases. Although many S. aureus have this characteristic, some do not. The population dynamics regarding this defining trait have yet to be explored. We report here that coagulases are public goods that confer protection against antimicrobials and immune factors within a local population or community, thus promoting growth and virulence. By utilizing variants of a methicillin-resistant S. aureus we infer that the secretion of coagulases is a cooperative trait, which is subject to exploitation by invading mutants that do not produce the public goods themselves. However, overexploitation, "tragedy of the commons," does not occur at clinically relevant conditions. Our micrographs indicate this is due to spatial segregation and population viscosity. These findings emphasize the critical role of coagulases in a social evolution context and provide a possible explanation as to why the secretion of these public goods is maintained in mixed S. aureus communities.


Asunto(s)
Coagulasa/fisiología , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Biopelículas/crecimiento & desarrollo , Coagulación Sanguínea , Coagulasa/genética , Humanos , Microbiota/genética , Microbiota/fisiología , Modelos Biológicos , Mutación , Infecciones Estafilocócicas/sangre , Virulencia
8.
Proc Natl Acad Sci U S A ; 115(22): E5125-E5134, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760087

RESUMEN

Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium's primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.


Asunto(s)
Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transcriptoma/genética , Animales , Biopelículas , Fibrosis Quística , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genes Bacterianos , Humanos , Aprendizaje Automático , Ratones , Pseudomonas aeruginosa/aislamiento & purificación , Percepción de Quorum/genética , Máquina de Vectores de Soporte , Infección de la Herida Quirúrgica/metabolismo , Infección de la Herida Quirúrgica/microbiología
9.
Int Wound J ; 18(5): 626-638, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33565263

RESUMEN

Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 107  colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 107  CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.


Asunto(s)
Infección de Heridas , Animales , Bacterias , Biopelículas , Ratones , Imagen Óptica , Sistemas de Atención de Punto , Infección de Heridas/diagnóstico
10.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32284368

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality worldwide. To survive in both the environment and the host, P. aeruginosa must cope with redox stress. In P. aeruginosa, a primary mechanism for protection from redox stress is the antioxidant glutathione (GSH). GSH is a low-molecular-weight thiol-containing tripeptide (l-γ-glutamyl-l-cysteinyl-glycine) that can function as a reversible reducing agent. GSH plays an important role in P. aeruginosa physiology and is known to modulate several cellular and social processes that are likely important during infection. However, the role of GSH biosynthesis during mammalian infection is not well understood. In this study, we created a P. aeruginosa mutant defective in GSH biosynthesis to examine how loss of GSH biosynthesis affects P. aeruginosa virulence. We found that GSH is critical for normal growth in vitro and provides protection against hydrogen peroxide, bleach, and ciprofloxacin. We also studied the role of P. aeruginosa GSH biosynthesis in four mouse infection models, including the surgical wound, abscess, burn wound, and acute pneumonia models. We discovered that the GSH biosynthesis mutant was slightly less virulent in the acute pneumonia infection model but was equally virulent in the three other models. This work provides new and complementary data regarding the role of GSH in P. aeruginosa during mammalian infection.


Asunto(s)
Glutatión/biosíntesis , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Infecciones de los Tejidos Blandos/microbiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Interacciones Huésped-Patógeno , Humanos , Viabilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo
11.
Proc Biol Sci ; 287(1937): 20202272, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33081616

RESUMEN

Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.


Asunto(s)
Pseudomonas aeruginosa , Infección de Heridas/microbiología , Animales , Ratones , Infecciones por Pseudomonas , Virulencia
12.
Langmuir ; 36(6): 1585-1595, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31990563

RESUMEN

Biofilms are communities of bacteria embedded in a polymeric matrix which are found in infections and in environments outside the body. Breaking down the matrix renders biofilms more susceptible to physical disruption and to treatments such as antibiotics. Different species of bacteria, and different strains within the same species, produce different types of matrix polymers. This suggests that targeting specific polymers for disruption may be more effective than nonspecific approaches to disrupting biofilm matrixes. In this study, we treated Pseudomonas aeruginosa biofilms with enzymes that are specific to different matrix polymers. We measured the resulting alteration in biofilm mechanics using bulk rheology and changes in structure using electron microscopy. We find that, for biofilms grown in vitro, the effect of enzymatic treatment is greatest when the enzyme is specific to a dominant matrix polymer. Specifically matched enzymatic treatment tends to reduce yield strain and yield stress and increase the rate of biofilm drying, due to increased diffusivity as a result of network compromise. Electron micrographs qualitatively suggest that well-matched enzymatic treatments reduce long-range structure and shorten connecting network fibers. Previous work has shown that generic glycoside hydrolases can cause dispersal of bacteria from in vivo and ex vivo biofilms into a free-swimming state, and thereby make antibiotic treatment more effective. For biofilms grown in wounded mice, we find that well-matched treatments that result in the greatest mechanical compromise in vitro induce the least dispersal ex vivo. Moreover, we find that generic glycoside hydrolases have no measurable effect on the mechanics of biofilms grown in vitro, while previous work has shown them to be highly effective at inducing dispersal in vivo and ex vivo. This highlights the possibility that effective approaches to eradicating biofilms may depend strongly on the growth environment.


Asunto(s)
Polímeros , Pseudomonas aeruginosa , Animales , Antibacterianos/farmacología , Biopelículas , Ratones
13.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28630071

RESUMEN

Polymicrobial interactions are complex and can influence the course of an infection, as is the case when two or more species exhibit a synergism that produces a disease state not seen with any of the individual species alone. Cell-to-cell signaling is key to many of these interactions, but little is understood about how the host environment influences polymicrobial interactions or signaling between bacteria. Chronic wounds are typically polymicrobial, with Staphylococcus aureus and Pseudomonas aeruginosa being the two most commonly isolated species. While P. aeruginosa readily kills S. aureusin vitro, the two species can coexist for long periods together in chronic wound infections. In this study, we investigated the ability of components of the wound environment to modulate interactions between P. aeruginosa and S. aureus We demonstrate that P. aeruginosa quorum sensing is inhibited by physiological levels of serum albumin, which appears to bind and sequester some homoserine lactone quorum signals, resulting in the inability of P. aeruginosa to produce virulence factors that kill S. aureus These data could provide important clues regarding the virulence of P. aeruginosa in albumin-depleted versus albumin-rich infection sites and an understanding of the nature of friendly versus antagonistic interactions between P. aeruginosa and S. aureus.


Asunto(s)
Antibiosis/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Albúmina Sérica/metabolismo , Staphylococcus aureus/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Humanos , Unión Proteica
14.
Artículo en Inglés | MEDLINE | ID: mdl-27872074

RESUMEN

The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracellular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound healing extremely difficult. Thus, compounds which have the ability to degrade biofilms, but not host tissue components, are highly sought after for clinical applications. In this study, we examined the efficacy of two glycoside hydrolases, α-amylase and cellulase, which break down complex polysaccharides, to effectively disrupt Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture biofilms. We hypothesized that glycoside hydrolase therapy would significantly reduce EPS biomass and convert bacteria to their planktonic state, leaving them more susceptible to conventional antimicrobials. Treatment of S. aureus and P. aeruginosa biofilms, grown in vitro and in vivo, with solutions of α-amylase and cellulase resulted in significant reductions in biomass, dissolution of the biofilm, and an increase in the effectiveness of subsequent antibiotic treatments. These data suggest that glycoside hydrolase therapy represents a potential safe, effective, and new avenue of treatment for biofilm-related infections.


Asunto(s)
Biopelículas/efectos de los fármacos , Glicósido Hidrolasas/metabolismo , Antibacterianos/farmacología , Celulasa/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , alfa-Amilasas/metabolismo
15.
Crit Rev Microbiol ; 43(4): 453-465, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27869519

RESUMEN

Medical science is pitted against an ever-increasing rise in antibiotic tolerant microorganisms. Concurrently, during the past decade, biofilms have garnered much attention within research and clinical practice. Although the significance of clinical biofilms is becoming very apparent, current methods for diagnostics and direction of therapy plans in many hospitals do not reflect this knowledge; with many of the present tools proving to be inadequate for accurately mimicking the biofilm phenomenon. Based on current findings, we address some of the fundamental issues overlooked by clinical labs: the paradigm shifts that need to occur in assessing chronic wounds; better simulation of physiological conditions in vitro; and the importance of incorporating polymicrobial populations into biofilm models. In addition, this review considers using a biofilm relevant in vitro model for cultivating and determining the antibiotic tolerance and susceptibility of microorganisms associated with chronic wounds. This model presents itself as a highly rapid and functional tool that can be utilized by hospitals in an aim to improve bedside treatments.


Asunto(s)
Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Infección de Heridas/microbiología , Heridas y Lesiones/microbiología , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/microbiología , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/patogenicidad , Humanos , Pruebas de Sensibilidad Microbiana , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/patología
16.
Anal Biochem ; 539: 144-148, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107579

RESUMEN

Monitoring patients with burn wounds for infection is standard practice because failure to rapidly and specifically identify a pathogen can result in poor clinical outcomes, including death. Therefore, a method that facilitates detection and identification of pathogens in situ within minutes of biopsy would be a significant benefit to clinicians. Mass spectrometry is rapidly becoming a standard tool in clinical settings, capable of identifying specific pathogens from complex samples. Imaging mass spectrometry (IMS) expands the information content by enabling spatial resolution of biomarkers in tissue samples as in histology, without the need for specific stains/antibodies. Herein, a murine model of thermal injury was used to study infection of burn tissue by Pseudomonas aeruginosa. This is the first use of IMS to detect P. aeruginosa infection in situ from thermally injured tissue. Multiple molecular features could be spatially resolved to infected or uninfected tissue. This demonstrates the potential use of IMS in a clinical setting to aid doctors in identifying both presence and species of pathogens in tissue.


Asunto(s)
Biomarcadores/análisis , Quemaduras/microbiología , Pseudomonas aeruginosa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Quemaduras/complicaciones , Quemaduras/patología , Carboximetilcelulosa de Sodio/química , Modelos Animales de Enfermedad , Gelatina/química , Ratones , Imagen Óptica , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología
17.
PLoS Genet ; 10(7): e1004518, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25057820

RESUMEN

Opportunistic infections caused by Pseudomonas aeruginosa can be acute or chronic. While acute infections often spread rapidly and can cause tissue damage and sepsis with high mortality rates, chronic infections can persist for weeks, months, or years in the face of intensive clinical intervention. Remarkably, this diverse infectious capability is not accompanied by extensive variation in genomic content, suggesting that the genetic capacity to be an acute or a chronic pathogen is present in most P. aeruginosa strains. To investigate the genetic requirements for acute and chronic pathogenesis in P. aeruginosa infections, we combined high-throughput sequencing-mediated transcriptome profiling (RNA-seq) and genome-wide insertion mutant fitness profiling (Tn-seq) to characterize gene expression and fitness determinants in murine models of burn and non-diabetic chronic wound infection. Generally we discovered that expression of a gene in vivo is not correlated with its importance for fitness, with the exception of metabolic genes. By combining metabolic models generated from in vivo gene expression data with mutant fitness profiles, we determined the nutritional requirements for colonization and persistence in these infections. Specifically, we found that long-chain fatty acids represent a major carbon source in both chronic and acute wounds, and P. aeruginosa must biosynthesize purines, several amino acids, and most cofactors during infection. In addition, we determined that P. aeruginosa requires chemotactic flagellar motility for fitness and virulence in acute burn wound infections, but not in non-diabetic chronic wound infections. Our results provide novel insight into the genetic requirements for acute and chronic P. aeruginosa wound infections and demonstrate the power of using both gene expression and fitness profiling for probing bacterial virulence.


Asunto(s)
Lesiones Encefálicas/genética , Perfilación de la Expresión Génica , Pseudomonas aeruginosa/genética , Infección de la Herida Quirúrgica/genética , Animales , Lesiones Encefálicas/microbiología , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Infecciones Oportunistas/genética , Infecciones Oportunistas/microbiología , Pseudomonas aeruginosa/patogenicidad , Infección de la Herida Quirúrgica/microbiología , Factores de Virulencia/genética
18.
Proc Natl Acad Sci U S A ; 111(21): 7819-24, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825893

RESUMEN

The oral pathogen Aggregatibacter actinomycetemcomitans (Aa) resides in infection sites with many microbes, including commensal streptococci such as Streptococcus gordonii (Sg). During infection, Sg promotes the virulence of Aa by producing its preferred carbon source, l-lactate, a phenomenon referred to as cross-feeding. However, as with many streptococci, Sg also produces high levels of the antimicrobial hydrogen peroxide (H2O2), leading to the question of how Aa deals with this potent antimicrobial during coinfection. Here, we show that Aa possesses two complementary responses to H2O2: a detoxification or fight response mediated by catalase (KatA) and a dispersion or flight response mediated by Dispersin B (DspB), an enzyme that dissolves Aa biofilms. Using a murine abscess infection model, we show that both of these responses are required for Sg to promote Aa virulence. Although the role of KatA is to detoxify H2O2 during coinfection, 3D spatial analysis of mixed infections revealed that DspB is required for Aa to spatially organize itself at an optimal distance (>4 µm) from Sg, which we propose allows cross-feeding but reduces exposure to inhibitory levels of H2O2. In addition, these behaviors benefit not only Aa but also Sg, suggesting that fight and flight stimulate the fitness of the community. These results reveal that an antimicrobial produced by a human commensal bacterium enhances the virulence of a pathogenic bacterium by modulating its spatial location in the infection site.


Asunto(s)
Aggregatibacter actinomycetemcomitans/patogenicidad , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Catalasa/metabolismo , Coinfección/fisiopatología , Glicósido Hidrolasas/metabolismo , Streptococcus gordonii/metabolismo , Aggregatibacter actinomycetemcomitans/metabolismo , Animales , Coinfección/microbiología , Peróxido de Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Ratones , Análisis por Micromatrices , Virulencia
19.
Anaerobe ; 45: 65-70, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28450145

RESUMEN

Necrotizing soft tissue infections (NSTIs) are the most severe and rapidly progressing class of skin and soft tissue infections (SSTIs). They are a surgical emergency and are associated with high mortality and morbidity. While NSTIs remain relatively rare, their incidence is steadily rising. Earlier diagnosis and more focused antibiotic treatments can potentially improve patient outcome, but both of these solutions require a more accurate understanding of the microbial component of these infections. While molecular detection methods, namely 16S sequencing, have not been traditionally used to identify the causative microorganisms in NSTIs, they are becoming more commonplace for other types of SSTIs, especially for chronic wound infections. In chronic wound infections, 16S sequencing has revealed a higher than previously detected prevalence of obligate anaerobes. Therefore, it is possible that 16S sequencing may also detect a higher than expected proportion of obligate anaerobes in NSTIs. In this review, we discuss the current state of knowledge concerning the diagnosis and treatment of NSTIs and present reasons why the role of anaerobes may be significantly underestimated.


Asunto(s)
Bacterias Anaerobias/aislamiento & purificación , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones de los Tejidos Blandos/microbiología , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , Incidencia , Técnicas de Diagnóstico Molecular/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Enfermedades Cutáneas Bacterianas/diagnóstico , Enfermedades Cutáneas Bacterianas/epidemiología , Infecciones de los Tejidos Blandos/diagnóstico , Infecciones de los Tejidos Blandos/epidemiología
20.
Proc Natl Acad Sci U S A ; 110(3): 1059-64, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277552

RESUMEN

Most infections result from colonization by more than one microbe. Within such polymicrobial infections, microbes often display synergistic interactions that result in increased disease severity. Although many clinical studies have documented the occurrence of synergy in polymicrobial infections, little is known about the underlying molecular mechanisms. A prominent pathogen in many polymicrobial infections is Pseudomonas aeruginosa, a Gram-negative bacterium that displays enhanced virulence during coculture with Gram-positive bacteria. In this study we discovered that during coinfection, P. aeruginosa uses peptidoglycan shed by Gram-positive bacteria as a cue to stimulate production of multiple extracellular factors that possess lytic activity against prokaryotic and eukaryotic cells. Consequently, P. aeruginosa displays enhanced virulence in a Drosophila model of infection when cocultured with Gram-positive bacteria. Inactivation of a gene (PA0601) required for peptidoglycan sensing mitigated this phenotype. Using Drosophila and murine models of infection, we also show that peptidoglycan sensing results in P. aeruginosa-mediated reduction in the Gram-positive flora in the infection site. Our data suggest that P. aeruginosa has evolved a mechanism to survey the microbial community and respond to Gram-positive produced peptidoglycan through production of antimicrobials and toxins that not only modify the composition of the community but also enhance host killing. Additionally, our results suggest that therapeutic strategies targeting Gram-positive bacteria might be a viable approach for reducing the severity of P. aeruginosa polymicrobial infections.


Asunto(s)
Coinfección/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Animales , Secuencia de Bases , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Drosophila melanogaster , Femenino , Genes Bacterianos , Humanos , Masculino , Ratones , Mutación , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA