Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 153(9): 2571-2584, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394117

RESUMEN

BACKGROUND: The consumption of poor-quality protein increases the risk of essential amino acid (EAA) deficiency, particularly for lysine and threonine. Thus, it is necessary to be able to detect easily EAA deficiency. OBJECTIVES: The purpose of this study was to develop metabolomic approaches to identify specific biomarkers for an EAA deficiency, such as lysine and threonine. METHODS: Three experiments were performed on growing rats. In experiment 1, rats were fed for 3 weeks with lysine (L30), or threonine (T53)-deficient gluten diets, or nondeficient gluten diet (LT100) in comparison with the control diet (milk protein, PLT). In experiments 2a and 2b, rats were fed at different concentrations of lysine (L) or threonine (T) deficiency: L/T15, L/T25, L/T40, L/T60, L/T75, P20, L/T100 and L/T170. Twenty-four-hour urine and blood samples from portal vein and vena cava were analyzed using LC-MS. Data from experiment 1 were analyzed by untargeted metabolomic and Independent Component - Discriminant Analysis (ICDA) and data from experiments 2a and 2b by targeted metabolomic and a quantitative Partial Least- Squares (PLS) regression model. Each metabolite identified as significant by PLS or ICDA was then tested by 1-way ANOVA to evaluate the diet effect. A two-phase linear regression analysis was used to determine lysine and threonine requirements. RESULTS: ICDA and PLS found molecules that discriminated between the different diets. A common metabolite, the pipecolate, was identified in experiments 1 and 2a, confirming that it could be specific to lysine deficiency. Another metabolite, taurine, was found in experiments 1 and 2b, so probably specific to threonine deficiency. Pipecolate or taurine breakpoints obtained give a value closed to the values obtained by growth indicators. CONCLUSIONS: Our results showed that the EAA deficiencies influenced the metabolome. Specific urinary biomarkers identified could be easily applied to detect EAA deficiency and to determine which AA is deficient.


Asunto(s)
Lisina , Desnutrición , Ratas , Animales , Treonina , Taurina , Dieta , Glútenes
2.
Chem Res Toxicol ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37729183

RESUMEN

Epidemiological studies aim to assess associations between diseases and risk factors. Such investigations involve a large sample size and require powerful analytical methods to measure the effects of risk factors, resulting in a long analysis time. In this study, chemical exposure markers were detected as the main variables strongly affecting two components coming from a principal component analysis (PCA) exploration of the metabolomic data generated from urinary samples collected on a cohort of about 500 individuals using direct introduction coupled with a Fourier-transform ion cyclotron resonance instrument. The assignment of their chemical identity was first achieved based on their isotopic fine structures detected at very high resolution (Rp > 900,000). Their identification as dimethylbiguanide and sotalol was obtained at level 1, thanks to the available authentic chemical standards, tandem mass spectrometry (MS/MS) experiments, and collision cross section measurements. Epidemiological data confirmed that the subjects discriminated by PCA had declared to be prescribed these drugs for either type II diabetes or cardiac arrhythmia. Concentrations of these drugs in urine samples of interest were also estimated by rapid quantification using an external standard calibration method, direct introduction, and MS/MS experiments. Regression analyses showed a good correlation between the estimated drug concentrations and the scores of individuals distributed on these specific PCs. The detection of these chemical exposure markers proved the potential of the proposed high-throughput approach without any prior drug exposure knowledge as a powerful emerging tool for rapid and large-scale phenotyping of subjects enrolled in epidemiological studies to rapidly characterize the chemical exposome and adherence to medical prescriptions.

3.
Anal Chem ; 94(9): 3997-4004, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35201769

RESUMEN

Although several successful applications of benchtop nuclear magnetic resonance (NMR) spectroscopy in quantitative mixture analysis exist, the possibility of calibration transfer remains mostly unexplored, especially between high- and low-field NMR. This study investigates for the first time the calibration transfer of partial least squares regressions [weight average molecular weight (Mw) of lignin] between high-field (600 MHz) NMR and benchtop NMR devices (43 and 60 MHz). For the transfer, piecewise direct standardization, calibration transfer based on canonical correlation analysis, and transfer via the extreme learning machine auto-encoder method are employed. Despite the immense resolution difference between high-field and low-field NMR instruments, the results demonstrate that the calibration transfer from high- to low-field is feasible in the case of a physical property, namely, the molecular weight, achieving validation errors close to the original calibration (down to only 1.2 times higher root mean square errors). These results introduce new perspectives for applications of benchtop NMR, in which existing calibrations from expensive high-field instruments can be transferred to cheaper benchtop instruments to economize.


Asunto(s)
Lignina , Calibración , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Peso Molecular
4.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432005

RESUMEN

This study presents the kinetic modeling of the natural long-term aging of the pharmaceutical substance as well as the intact tablets of Diclofenac. Datasets are collections of near-infrared spectra acquired from the intact tablets packed in plastic blisters and the spectra of the pure substance. Fresh samples and samples at different stages of degradation are analyzed. No methods of accelerated aging were applied. Multi-step application of MCR-ALS in its soft version followed by the kinetic modeling of the results helps to propose a generic degradation mechanism; which includes: a global kinetic model; approximations of the NIR spectra of the intermediate and product; rough estimates of rate constants. We study tablets in blister packs; exactly as they are presented in pharmacies; and this is important from a practical point of view.


Asunto(s)
Diclofenaco , Luz , Cinética , Plásticos
5.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30818755

RESUMEN

Origanum ehrenbergii Boiss., an endemic plant to Lebanon, is widely acknowledged in Lebanese traditional medicine. The aim of the present study was to evaluate the influence of the drying method, region, and time of harvest on yield and chemical composition of O. ehrenbergii essential oils (EOs). Plants were harvested monthly throughout 2013 and 2014, from two different regions, Aabadiye and Qartaba, then dried using two drying methods: lyophilization and shade-drying at 4 °C. EO was extracted by hydrodistillation and analyzed by GC/MS. GC-MS data, combined with independent component analysis (ICA) and common component and specific weight analysis (CCSWA), showed that drying techniques, region of harvest, and soil composition have no effect on the chemical composition of O. ehrenbergii EOs. Of the factors analyzed, only harvesting time affected the EO composition of this species. High and stable amounts of carvacrol, associated with reliable antimicrobial activities, were detected in material harvested between March and October. EOs obtained from plants harvested in Aabadiye in January and February showed high amounts of thymoquinone, related to anti-inflammatory and cytotoxic effects. The use of ICA and CCSWA was proven to be efficient, and allowed the development of a discriminant model for the classification of O. ehrenbergii chemotype and the determination of the best harvesting time.


Asunto(s)
Aceites Volátiles/análisis , Aceites Volátiles/química , Origanum/química , Altitud , Desecación , Análisis Discriminante , Geografía , Líbano , Análisis de Componente Principal , Suelo , Factores de Tiempo
6.
Anal Bioanal Chem ; 410(2): 483-490, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29167936

RESUMEN

Due to the presence of pollutants in the environment and food, the assessment of human exposure is required. This necessitates high-throughput approaches enabling large-scale analysis and, as a consequence, the use of high-performance analytical instruments to obtain highly informative metabolomic profiles. In this study, direct introduction mass spectrometry (DIMS) was performed using a Fourier transform ion cyclotron resonance (FT-ICR) instrument equipped with a dynamically harmonized cell. Data quality was evaluated based on mass resolving power (RP), mass measurement accuracy, and ion intensity drifts from the repeated injections of quality control sample (QC) along the analytical process. The large DIMS data size entails the use of bioinformatic tools for the automatic selection of common ions found in all QC injections and for robustness assessment and correction of eventual technical drifts. RP values greater than 106 and mass measurement accuracy of lower than 1 ppm were obtained using broadband mode resulting in the detection of isotopic fine structure. Hence, a very accurate relative isotopic mass defect (RΔm) value was calculated. This reduces significantly the number of elemental composition (EC) candidates and greatly improves compound annotation. A very satisfactory estimate of repeatability of both peak intensity and mass measurement was demonstrated. Although, a non negligible ion intensity drift was observed for negative ion mode data, a normalization procedure was easily applied to correct this phenomenon. This study illustrates the performance and robustness of the dynamically harmonized FT-ICR cell to perform large-scale high-throughput metabolomic analyses in routine conditions. Graphical abstract Analytical performance of FT-ICR instrument equipped with a dynamically harmonized cell.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Urinálisis/métodos , Ciclotrones , Exactitud de los Datos , Análisis de Fourier , Humanos , Espectrometría de Masas/instrumentación , Metabolómica/instrumentación , Urinálisis/instrumentación
7.
J Sci Food Agric ; 98(3): 963-975, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28714272

RESUMEN

BACKGROUND: Reduction of NaCl content of cheeses has received considerable attention by research during the past decades because of its health effects. Nonetheless, NaCl reduction is a challenge since it plays an important role in cheese quality, such as structure, texture and functional properties. Several methods were used to evaluate the effect of NaCl on these attributes. In this study, Cantal-type cheeses with different salts (NaCl and KCl) were analyzed for their structure at a molecular level and rheological properties during heating (20-60 °C) and cooling (60-20 °C). The structure was investigated by synchronous fluorescence spectroscopy (SFS) and the rheological properties by small-amplitude oscillatory test. RESULTS: Independent components analysis (ICA) gave three independent components that were attributed to coenzyme/Maillard reaction products (IC1), tryptophan (IC2) and vitamin A (IC3). Signal proportions of each IC depicted information regarding the changes in those fluorophores with salts, heating and cooling. In addition, canonical correlation analysis (CCA) of the IC proportions and rheological measurements related modifications at a molecular level evaluated by fluorescence to cheese texture (0.34 < R2 < 0.99). CONCLUSION: This study demonstrated that SFS can monitor and characterize modification of Cantal-type cheeses at a molecular level, based on the analysis of the fluorescence spectra by ICA. The nature of correlation between signal proportions and the rheological parameters depicted that rheological attributes of cheeses observed at the macroscopic level can be derived from fluorescence spectra. © 2017 Society of Chemical Industry.


Asunto(s)
Queso/análisis , Análisis de los Alimentos/métodos , Cloruro de Potasio/análisis , Cloruro de Sodio/análisis , Espectrometría de Fluorescencia/métodos , Culinaria
8.
Crit Rev Food Sci Nutr ; 57(10): 2009-2020, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25975361

RESUMEN

The most commonly used technique to prepare samples for the analysis of wine volatile is the headspace solid-phase microextraction (HS-SPME). This method has gained popularity in last few years, as it is a unique solventless preparation technique. In this paper, a summary of recently published studies using HS-SPME for the analysis of wine aromas, with special emphasis on the method developed, has been compiled. Several papers are discussed in detail, mainly with respect to the SPME conditions used. A brief summary of the reviews related to HS-SPME analysis is given and discussed. Several parameters affecting the HS-SPME, such as the salt concentration and the agitation conditions, are used in the same way as used in several papers. The HS-SPME extraction proved to be sufficiently sensitive to satisfy legislative requirements related to low detection and quantification limits as well as method accuracy and precision requirements. However, in order to achieve the best performance and precision, the protocol needs to be optimized for each case. The effect of different parameters must be well characterized to ensure correct extraction and desorption to ensure the transfer of extracted compounds into the analytical system. The operating parameters, such as time, temperature, and agitation, must then be kept constant for all the samples.


Asunto(s)
Inspección de Alimentos/métodos , Calidad de los Alimentos , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Métodos Analíticos de la Preparación de la Muestra , Inspección de Alimentos/normas , Inspección de Alimentos/tendencias , Odorantes , Control de Calidad , Reproducibilidad de los Resultados , Microextracción en Fase Sólida , Compuestos de Azufre/análisis , Volatilización
9.
J Sep Sci ; 39(14): 2760-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27219290

RESUMEN

A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction.


Asunto(s)
Cosméticos/análisis , Nanoestructuras/química , Microextracción en Fase Sólida , Seguridad de Productos para el Consumidor , Cromatografía de Gases y Espectrometría de Masas
10.
J Sep Sci ; 39(9): 1675-83, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26990911

RESUMEN

Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils.


Asunto(s)
Aceite de Brassica napus/química , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas
11.
Chemosphere ; 349: 140824, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040263

RESUMEN

Anaerobic digestion (AD) is a promising waste management strategy that reduces landfilling while generating biogas. Anaerobic co-digestion involves mixing two or more substrates to enhance the nutrient balance required for microorganism growth and thus improve the degradation. Monitoring AD is crucial for comprehending the biological process, optimizing process stability, and achieving efficient biogas production. In this work, we have used three dimensional excitation emission fluorescence spectroscopy and mass spectrometry metabolomics, two complementary techniques, to monitor the anaerobic co-digestion (AcoD) of cellulose, ash wood or oak wood with food waste. The two approaches were compared together and to the biogas production records. Results of this experiment demonstrated the complementarity of both analytical techniques with the measurement of the biogas production since 3D fluorescence spectroscopy and MS metabolomics revealed the earlier molecular changes occurring in the bioreactors, mainly associated with the hydrolysis step, whereas the biogas production data reflected the biological activity in the last step of the digestion. Moreover, in all cases, the three data sets effectively delineated the differences among the substrates. While the two wood substrates were poorly degradable as they were richer in aromatic compounds, cellulose was highly degradable and was characterized by the production of several glycolipids. Then, the three tested AcoDs resulted in a similar 3D EEM fluorescence and metabolomics profiles, close to the one observed for the AD of food waste alone, indicating that the incorporation of the food waste drove the molecular degradation events in the AcoDs. Substrate-specific differences were appreciated from the biogas production data. The overall results of this research are expected to provide insight into the design of guidelines for monitoring AcoD.


Asunto(s)
Eliminación de Residuos , Anaerobiosis , Alimentos , Biocombustibles/análisis , Espectrometría de Fluorescencia , Reactores Biológicos , Alimento Perdido y Desperdiciado , Espectrometría de Masas , Digestión , Metano/metabolismo , Aguas del Alcantarillado/química
12.
Metabolites ; 14(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668305

RESUMEN

In the context of dietary transition toward plant proteins, it is necessary to ensure protein security in populations. It would thus be of interest to identify biomarkers of altered protein digestibility in populations. We examined the association between urinary metabolites and the acute intake of low- or highly digestible protein in healthy volunteers. The urine samples were collected before and 9 h after the ingestion of a meal containing either no protein, zein (low-digestible) or whey protein isolate (highly digestible). The liquid chromatography-high resolution mass spectrometry metabolomics approach was used for the profiling of the urinary metabolites. For the standardization of metabolomics data sets, osmolality-based, standard normal variates (SNV) and probabilistic quotient normalization (PQN) techniques were used. The ANOVA-based factorial method, AComDim_ICA, was used for chemometrics analysis. The osmolality adjustment has a beneficial effect and the subsequent mathematical normalization improves the chemometric analysis further. Some changes in the urinary metabolomes were observed 9 h after the meal in the three groups. However, there was no difference in the urine metabolome between groups. No biomarker of protein digestibility can be identified after the ingestion of a single meal, even when marked differences in the digestion efficiency of protein have been observed.

13.
Data Brief ; 41: 107960, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35242940

RESUMEN

Data in this article provides detailed information on the microbial dynamics and degradation performances in two full-scale anaerobic digesters operated in parallel for 476 days. One of them was kept at 35 °C for the whole experiment, while the other was submitted to sub-mesophilic (25 °C) conditions between days 123 and 373. Sludge samples were collected from both digesters at days 0, 80, 177, 218, 281, 353, and 462. The provided data include the operational conditions of the digesters and the characterization of the sludge samples at the physicochemical level, indicative of the digesters' degradation performance. It also includes the characterization of the sludge samples at the multiomics level (16S rRNA gene sequencing, metagenomics, and metabolomics profiling), to decipher the changes in the microbial structure and molecular activity. The 16S rDNA gene sequencing, metagenomics, and metabolomics data were generated using an IonTorrent PGM sequencer, an Illumina NextSeq 500 sequencer, and LTQ-Orbitrap XL mass spectrometer respectively. The 16S rDNA gene raw data and the metagenomics data have been deposited in the BioProject PRJEB49115, in the ENA database (https://www.ebi.ac.uk/ena/browser/view/PRJEB49115). The metabolomics data has been deposited at the Metabolomics Workbench, with study id ST002004 (DOI: 10.21228/M8JM6B). The data can be used as a source for comparisons with other studies working with data from full-scale anaerobic digesters, especially for those investigating the effect of the temperature modification. The data is associated with the research article "Metataxonomics, metagenomics, and metabolomics analysis of the influence of temperature modification in full-scale anaerobic digesters" (Puig-Castellví et al [1]).

14.
Bioresour Technol ; 346: 126612, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954354

RESUMEN

Full-scale anaerobic digesters' performance is regulated by modifying their operational conditions, but little is known about how these modifications affect their microbiome. In this work, we monitored two originally mesophilic (35 °C) full-scale anaerobic digesters during 476 days. One digester was submitted to sub-mesophilic (25 °C) conditions between days 123 and 373. We characterized the effect of temperature modification using a multi-omics (metataxonomics, metagenomics, and metabolomics) approach. The metataxonomics and metagenomics results revealed that the lower temperature allowed a substantial increase of the sub-dominant bacterial population, destabilizing the microbial community equilibrium and reducing the biogas production. After restoring the initial mesophilic temperature, the bacterial community manifested resilience in terms of microbial structure and functional activity. The metabolomic signature of the sub-mesophilic acclimation was characterized by a rise of amino acids and short peptides, suggesting a protein degradation activity not directed towards biogas production.


Asunto(s)
Reactores Biológicos , Metagenómica , Anaerobiosis , Metabolómica , Metano , Temperatura
15.
Talanta ; 229: 122303, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838766

RESUMEN

Chemometrics pre-processing of spectral data is widely performed to enhance the predictive performance of near-infrared (NIR) models related to fresh fruit quality. Pre-processing approaches in the domain of NIR data analysis are used to remove the scattering effects, thus, enhancing the absorption components related to the chemical properties. However, in the case of fresh fruit, both the scattering and absorption properties are of key interest as they jointly explain the physicochemical state of a fruit. Therefore, pre-processing data that reduces the scattering information in the spectra may lead to poorly performing models. The objectives of this study are to test two hypotheses to explore the effect of pre-processing on NIR spectra of fresh fruit. The first hypothesis is that the pre-processing of NIR spectra with scatter correction techniques can reduce the predictive performance of models as the scatter correction can reduce the useful scattering information correlated to the property of interest. The second hypothesis is that the Deep Learning (DL) can model the raw absorbance data (mix of scattering and absorption) much more efficiently than the Partial Least Squares (PLS) regression analysis. To test the hypotheses, a real NIR data set related to dry matter (DM) prediction in mango fruit was used. The dataset consisted of a total of 11,420 NIR spectra and reference DM measurements for model training and independent testing. The chemometric pre-processing methods explored were standard normal variate (SNV), variable sorting for normalization (VSN), Savitzky-Golay based 2nd derivative and their combinations. Further two modelling approaches i.e., PLS regression and DL were used to evaluate the effect of pre-processing. The results showed that the best root mean squared error of prediction (RMSEP) for both the PLS and DL models were obtained with the raw absorbance data. The spectral pre-processing in general decreased the performance of both the PLS and DL models. Further, the DL model attained the lowest RMSEP of 0.76%, which was 13% lower compared to the PLS regression on the raw absorbance data. Pre-processing approaches should be carefully used while analysing the NIR data related to fresh fruit.

16.
Nutrients ; 13(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916877

RESUMEN

The western dietary pattern is known for its frequent meals rich in saturated fat and protein, resulting in a postprandial state for a large part of the day. Therefore, our aim was to investigate the postprandial glucose and lipid metabolism in response to high (HP) or normal (NP) protein, high-fat hypercaloric diet and to identify early biomarkers of protein intake and hepatic lipid accumulation. In a crossover design, 17 healthy subjects were randomly assigned to consume a HP or NP hypercaloric diet for two weeks. In parallel, a control group (CD; n = 10) consumed a weight-maintaining control diet. Biomarkers of postprandial lipid and glucose metabolism were measured in 24 h urine and in plasma before and following a meal challenge. The metabolic profile of urine but not plasma, showed increased excretion of 13C, carnitine and short chain acyl-carnitines after adaptation to the HP diet. Urinary excretion of decatrienoylcarnitine and octenoylcarnitine increased after adaptation to the NP diet. Our results suggest that the higher excretion of short-chain urinary acyl-carnitines could facilitate the elimination of excess fat of the HP diet and thereby reduce hepatic fat accumulation previously reported, whereas the higher excretion medium-chains acyl-carnitine could be early biomarkers of hepatic lipid accumulation.


Asunto(s)
Carnitina/análogos & derivados , Dieta Alta en Grasa/efectos adversos , Dieta Rica en Proteínas/efectos adversos , Dieta Occidental/efectos adversos , Síndrome Metabólico/diagnóstico , Adulto , Biomarcadores/orina , Carnitina/metabolismo , Carnitina/orina , Estudios Cruzados , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Ingestión de Energía/fisiología , Femenino , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/orina , Periodo Posprandial/fisiología , Eliminación Renal/fisiología , Adulto Joven
17.
Talanta ; 208: 120451, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816793

RESUMEN

Independent components analysis (ICA) is a probabilistic method, whose goal is to extract underlying component signals, that are maximally independent and non-Gaussian, from mixed observed signals. Since the data acquired in many applications in analytical chemistry are mixtures of component signals, such a method is of great interest. In this article recent ICA applications for quantitative and qualitative analysis in analytical chemistry are reviewed. The following experimental techniques are covered: fluorescence, UV-VIS, NMR, vibrational spectroscopies as well as chromatographic profiles. Furthermore, we reviewed ICA as a preprocessing tool as well as existing hybrid ICA-based multivariate approaches. Finally, further research directions are proposed. Our review shows that ICA is starting to play an important role in analytical chemistry, and this will definitely increase in the future.

18.
PLoS One ; 15(5): e0232324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32357180

RESUMEN

Anaerobic digestion (AD) is used to minimize solid waste while producing biogas by the action of microorganisms. To give an insight into the underlying microbial dynamics in anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed with either fish or grass waste). The microbial activity was characterized by 16S RNA sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not take into account this complexity nor the potential microbial interactions. In this line, we proposed a data pre-processing pipeline addressing these issues while not restricting only to the most abundant microorganisms. The data were analyzed by Common Components Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA results hinted the relationships between the microorganisms responding similarly to the AD physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the inter-species interactions within microbial communities.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biodiversidad , Análisis de Datos , Explotaciones Pesqueras , Interacciones Microbianas , ARN Bacteriano , ARN Ribosómico 16S , Estadística como Asunto
19.
Chemosphere ; 254: 126812, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32335442

RESUMEN

Anaerobic co-digestion (AcoD) can increase methane production of anaerobic digesters in plants treating wastewater sludge by improving the nutrient balance needed for the microorganisms to grow in the digesters, resulting in a faster process stabilization. Substrate mixture proportions are usually optimized in terms of biogas production, while the metabolic biodegradability of the whole mixture is neglected in this optimisation. In this aim, we developed a strategy to assess AcoD using metabolomics data. This strategy was explored in two different systems. Specifically, we investigated the co-digestion of wastewater sludge with different proportions of either grass or fish waste using untargeted High Performance Liquid Chromatography coupled to Mass Spectrometry (HPLC-MS) metabolomics and chemometrics methods. The analysis of these data revealed that adding grass waste did not improve the metabolic biodegradability of wastewater sludge. Conversely, a synergistic effect in the metabolic biodegradability was observed when fish waste was used, this effect being the highest for 25% of fish waste. In conclusion, metabolomics can be regarded as a promising tool both for characterizing the biochemical processes occurring during anaerobic digestion, and for providing a better understanding of the anaerobic digestion processes.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Biodegradación Ambiental , Biocombustibles/análisis , Reactores Biológicos , Metabolómica , Metano/análisis , Aguas del Alcantarillado/química , Aguas Residuales/análisis
20.
J Agric Food Chem ; 68(47): 13331-13343, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32066244

RESUMEN

This work investigated the influence of grape variety, vineyard location, and grape harvest maturity, combined with different oxygen availability treatments, on red wine composition during bottle aging. Chemometric analysis of wine compositional data (i.e., wine color parameters, SO2, metals, and volatile compounds) demonstrated that the wine samples could be differentiated according to the different viticultural or bottle-aging factors. Grape variety, vineyard location, and grape maturity showed greater influence on wine composition than bottle-aging conditions. For most measured wine compositional variables, the evolution patterns adopted from the viticultural factors were not altered by oxygen availability treatment. However, contrasting evolution patterns for some variables were observed according to specific viticultural factors, with examples including dimethyl sulfide, phenylacetaldehyde, maltol, and ß-damascenone for vineyard locations, 2-methylbutanal, 1,4-cineole, and linalool for grape variety, and methanethiol, methional, and homofuraneol for grape maturity.


Asunto(s)
Oxígeno/análisis , Vitis/química , Vino/análisis , Acetaldehído/análogos & derivados , Aromatizantes/química , Manipulación de Alimentos , Frutas/química , Norisoprenoides/análisis , Pironas/análisis , Sulfuros/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA