Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 98(5): 942-952, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30758085

RESUMEN

Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2 DCFDA-staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into 'low-ROS' and 'high-ROS' subpopulations. Pollen germination assays following fluorescence-activated cell sorting revealed that the high-ROS pollen germinated with a frequency that was 35-fold higher than the low-ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose-dependent alterations in DCF-fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry-based approaches to investigate metabolic changes during stress responses in pollen.


Asunto(s)
Adaptación Fisiológica/fisiología , Flores/fisiología , Respuesta al Choque Térmico/fisiología , Polen/fisiología , Polinización/fisiología , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Supervivencia Celular/fisiología , Citometría de Flujo , Flores/citología , Flores/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Estrés Oxidativo/fisiología , Polen/citología , Polen/metabolismo , Tubo Polínico/citología , Tubo Polínico/metabolismo , Tubo Polínico/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
Plant Cell ; 26(5): 2098-2113, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876252

RESUMEN

The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

3.
Trends Plant Sci ; 27(3): 237-246, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34627662

RESUMEN

To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.


Asunto(s)
Polen , Polinización , Respuesta al Choque Térmico , Óvulo Vegetal , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo
4.
Front Plant Sci ; 12: 672368, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093629

RESUMEN

Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants' ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.

5.
Plant Reprod ; 34(1): 61-78, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33459869

RESUMEN

KEY MESSAGE: Arabidopsis pollen transcriptome analysis revealed new intergenic transcripts of unknown function, many of which are long non-coding RNAs, that may function in pollen-specific processes, including the heat stress response. The male gametophyte is the most heat sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinating Arabidopsis thaliana pollen exposed to heat stress (HS), we identified 66 novel and 246 recently annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison with HS in cauline leaves and other RNAseq experiments indicated that 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed that 96% of the genes evolved recently in Brassicaceae. We found that 50 genes are putative targets of microRNAs and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional and play a significant role in pollen biology, including the HS response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Respuesta al Choque Térmico/genética , Filogenia , Polen/genética
6.
Methods Mol Biol ; 2160: 167-179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529435

RESUMEN

Determining pollen viability and other physiological parameters is of critical importance for evaluating the reproductive capacity of plants, both for fundamental and applied sciences. Flow cytometry is a powerful high-performance high-throughput tool for analyzing large populations of cells that has been in restricted use in plant cell research and in pollen-related studies, it has been minimized mostly for determination of DNA content. Recently, we developed a flow cytometry-based approach for robust and rapid evaluation of pollen viability that utilizes the reactive oxygen species (ROS) fluorescent reporter dye H2DCFDA (Luria et al., Plant J 98(5):942-952, 2019). This new approach revealed that pollen from Arabidopsis thaliana and Solanum lycopersicum naturally distribute into two subpopulations with different ROS levels. This method can be employed for a myriad of pollen-related studies, primarily in response to stimuli such as biotic or abiotic stress. In this chapter, we describe the protocol for H2DCFDA staining coupled with flow cytometry analysis providing specific guidelines. These guidelines are broadly applicable to many other types of cellular reporters to further develop this novel approach in the field of pollen biology.


Asunto(s)
Citometría de Flujo/métodos , Polen/citología , Arabidopsis , Supervivencia Celular , Fluoresceínas , Solanum lycopersicum , Polen/metabolismo , Polen/fisiología , Especies Reactivas de Oxígeno/metabolismo , Coloración y Etiquetado/métodos
7.
Front Plant Sci ; 9: 1558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483278

RESUMEN

Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.

9.
Plant Reprod ; 28(2): 73-89, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25761645

RESUMEN

KEY MESSAGE: Overview of pollen transcriptome studies. Pollen development is driven by gene expression, and knowledge of the molecular events underlying this process has undergone a quantum leap in the last decade through studies of the transcriptome. Here, we outline historical evidence for male haploid gene expression and review the wealth of pollen transcriptome data now available. Knowledge of the transcriptional capacity of pollen has progressed from genetic studies to the direct analysis of RNA and from gene-by-gene studies to analyses on a genomic scale. Microarray and/or RNA-seq data can now be accessed for all phases and cell types of developing pollen encompassing 10 different angiosperms. These growing resources have accelerated research and will undoubtedly inspire new directions and the application of system-based research into the mechanisms that govern the development, function and evolution of angiosperm pollen.


Asunto(s)
Proteínas de Plantas/genética , Polen/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA