Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 338: 69-89, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16888351

RESUMEN

Comparative analysis of DNA sequences is becoming one of the major methods for discovery of functionally important genomic intervals. Presented here the VISTA family of computational tools was built to help researchers in this undertaking. These tools allow the researcher to align DNA sequences, quickly visualize conservation levels between them, identify highly conserved regions, and analyze sequences of interest through one of the following approaches: . Browse precomputed whole-genome alignments of vertebrates and other groups of organisms. . Submit sequences to Genome VISTA to align them to whole genomes. . Submit two or more sequences to mVISTA to align them with each other (a variety of alignment programs with several distinct capabilities are made available).. Submit sequences to Regulatory VISTA (rVISTA) to perform transcription factor binding site predictions based on conservation within sequence alignments.Use stand-alone alignment and visualization programs to run comparative sequence analysis locally All VISTA tools use standard algorithms for visualization and conservation analysis to make comparison of results from different programs more straightforward. The web page http://genome.lbl.gov/vista/ serves as a portal for access to all VISTA tools. Our support group can be reached by email at vista@lbl.gov.


Asunto(s)
Alineación de Secuencia/estadística & datos numéricos , Análisis de Secuencia de ADN/estadística & datos numéricos , Programas Informáticos , Algoritmos , Animales , Biología Computacional , Gráficos por Computador , Bases de Datos de Ácidos Nucleicos , Genómica/estadística & datos numéricos , Humanos , Internet
2.
Genome Res ; 13(1): 73-80, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529308

RESUMEN

The availability of the assembled mouse genome makes possible, for the first time, an alignment and comparison of two large vertebrate genomes. We investigated different strategies of alignment for the subsequent analysis of conservation of genomes that are effective for assemblies of different quality. These strategies were applied to the comparison of the working draft of the human genome with the Mouse Genome Sequencing Consortium assembly, as well as other intermediate mouse assemblies. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. We obtained such coverage while preserving specificity. With a view towards the end user, we developed a suite of tools and Web sites for automatically aligning and subsequently browsing and working with whole-genome comparisons. We describe the use of these tools to identify conserved non-coding regions between the human and mouse genomes, some of which have not been identified by other methods.


Asunto(s)
Genoma Humano , Genoma , Proyectos de Investigación , Alineación de Secuencia/instrumentación , Alineación de Secuencia/métodos , Algoritmos , Animales , Cromosomas/genética , Cromosomas Humanos/genética , Redes de Comunicación de Computadores/instrumentación , Bases de Datos Genéticas , Humanos , Internet/instrumentación , Ratones , Programas Informáticos
3.
Genomics ; 84(4): 637-46, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15475241

RESUMEN

The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140- to 240-kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity; alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.


Asunto(s)
Empalme Alternativo , Evolución Biológica , Proteínas Sanguíneas/genética , Proteínas Asociadas a Microtúbulos/genética , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Animales , Proteínas del Citoesqueleto , Exones , Humanos , Intrones , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA