Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 20(2): 95-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409928

RESUMEN

Although small spills of non-ideal organic solvent mixtures are ubiquitous undesirable events in occupational settings, the potential risk of exposure associated with such scenarios remains insufficiently investigated. This study aimed to examine the impact of non-ideality on evaporation rates and contaminant air concentrations resulting from small spills of organic solvent mixtures. Evaporation rate constants alphas (α) were experimentally measured for five pure solvents using a gravimetric approach during solvent evaporation tests designed to simulate small spills of solvents. Two equations were used for estimating contaminants' evaporation rates from aqueous mixtures assuming either ideal or non-ideal behavior based on the pure-chemical alpha values. A spill model also known as the well-mixed room model with exponentially decreasing emission rate was used to predict air concentrations during various spill scenarios based on the two sets of estimated evaporation rates. Model predictive performance was evaluated by comparing the estimates against real-time concentrations measured for the same scenarios. Evaluations for 12 binary non-ideal aqueous mixtures found that the estimated evaporation rates accounting for the correction by the activity coefficients of the solvents (median = 0.0318 min-1) were higher than the evaporation rates estimated without the correction factor (median = 0.00632 min-1). Model estimates using the corrected evaporation rates reasonably agreed with the measured values, with a median predicted peak concentrations-to-measured peak concentrations ratio of 0.92 (0.81 to 1.32) and a median difference between the predicted and the measured peak times of -5 min. By contrast, when the non-corrected evaporation rates were used, the median predicted peak concentrations-to-measured peak concentrations ratio was 0.31 (0.08 to 0.75) and the median difference between the predicted and the measured peak times was +33 min. Results from this study demonstrate the importance of considering the non-ideality effect for accurately estimating evaporation rates and contaminant air concentrations generated by solvent mixtures. Moreover, this study is a step further in improving knowledge of modeling exposures related to small spills of organic solvent mixtures.


Asunto(s)
Ambiente Controlado , Agua , Solventes/análisis
2.
J Occup Environ Hyg ; 19(4): 185-196, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119975

RESUMEN

Exposure to airborne disinfection by-products, especially trichloramine and trichloromethane, may cause various adverse health effects for the workers and users of indoor swimming pools. This study aims to evaluate the spatial and temporal variations in trichloramine and trichloromethane concentrations within and between swimming pools. Workplace measurements were carried out at four indoor swimming pools in Quebec (Canada) during the cold season. To fully represent daily operating conditions, sampling started 2 hr before the swimming pool opened and continued until 2 hr after closing. To quantify trichloramine and trichloromethane concentrations, 304 air samples have been collected. Temperature, humidity, and CO2 were measured-simultaneously every 2 hr. The results showed that both trichloramine and trichloromethane concentrations varied significantly in time. The observed daily variations in trichloramine and trichloromethane concentrations suggest that the common practice of collecting a single 2-hr air sample does not represent daily pool trichloramine and trichloromethane contamination levels and, consequently, does not represent the true exposure and health risks for workers that are present for a full 8-hr shift. This study recommends a new 8-hr sampling strategy or a full-shift strategy using a cassette with three impregnated filters as a valid and cost-effective solution for comparing time-weighted average (TWA) concentrations to permissible trichloramine exposure limits.


Asunto(s)
Contaminación del Aire Interior , Exposición Profesional , Piscinas , Contaminación del Aire Interior/estadística & datos numéricos , Cloroformo , Desinfección , Humanos , Exposición Profesional/análisis
3.
Environ Sci Pollut Res Int ; 30(13): 36012-36022, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36539665

RESUMEN

Since 1995, Hery's trichloramine sampling procedure has been widely used to determine trichloramine exposure in indoor swimming pools. This method consists of pumping air at a 1 L/min flow rate for 2 h through a Teflon prefilter and two quartz fiber filters. Modified Hery methods have been reported using different sampling pump flow rates and types of prefilters. It is possible that the prefilter type or sample collection pump flow rate influenced the results of these studies. This study is designed to evaluate the effects of different cassette assemblies and sampling flow rates on the levels of measured trichloramine. Laboratory tests were performed using a trichloramine production setup designed for this study. Workplace measurements were carried out at four indoor swimming pools. Different prefiltering strategies were used: no prefilter, glass prefilter or Teflon prefilter in the sampling cassette, and an original separable prefilter cassette is presented in this study. Laboratory tests indicated that at trichloramine concentrations higher than 1 mg/m3, the percentage of trichloramine captured on the first filter could be less than 75%, which demonstrated possible loss of the material during sampling. An investigation of the prefilter effect on the sampling strategy using different cassette assemblies revealed that using a separable cassette assembly prevented overestimations of trichloramine levels. Furthermore, there were no significant differences between trichloramine concentrations measured at flow rates (from 0.5 to 2 L/min) in swimming pools.


Asunto(s)
Contaminación del Aire Interior , Piscinas , Contaminación del Aire Interior/análisis , Cloruros/análisis , Compuestos de Nitrógeno , Natación
4.
Ann Work Expo Health ; 66(3): 379-391, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34595509

RESUMEN

Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Exposición Profesional , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Oxidación-Reducción , Estrés Oxidativo , Tamaño de la Partícula , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA