Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048700

RESUMEN

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Lipólisis , Receptores Acoplados a Proteínas G/metabolismo , Termogénesis , Adipocitos/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Frío , Grasas de la Dieta/farmacología , Humanos , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Transcripción Genética
2.
Nature ; 599(7884): 296-301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707293

RESUMEN

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Homeostasis , Termogénesis , Adaptación Fisiológica , Adipocitos Beige/metabolismo , Animales , Frío , Metabolismo Energético , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Int J Obes (Lond) ; 48(7): 934-940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491191

RESUMEN

BACKGROUND/OBJECTIVE: Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS: AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS: Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS: In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Lipólisis , Obesidad , Humanos , Femenino , Masculino , Lipólisis/fisiología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Adulto , Persona de Mediana Edad , Tejido Adiposo/metabolismo , Caracteres Sexuales , Adipocitos/metabolismo , Factores Sexuales
4.
Clin Endocrinol (Oxf) ; 101(1): 3-9, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696530

RESUMEN

Renin-secreting tumours are rare causes of secondary hypertension and hypokalaemia. They are usually surgically curable, hence proper diagnostic work-up and tumour localisation is essential. In this paper, we present three Swedish patients recently diagnosed with renin secreting tumours, two with reninomas and one with an extrarenal renin-producing tumour, to illustrate diagnostic challenges. We also discuss the biochemical work-up, the pros and cons of different imaging techniques (computer tomography [CT], magnetic resonance imaging and [18F]fluorodeoxyglucose-positron emission tomography-CT), as well as how renal vein sampling (RVC) may contribute to localisation of the tumour.


Asunto(s)
Renina , Humanos , Renina/sangre , Renina/metabolismo , Femenino , Persona de Mediana Edad , Masculino , Adulto , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Renales/diagnóstico , Neoplasias Renales/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 43(6): 1054-1065, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37051928

RESUMEN

BACKGROUND: Adipose tissue insulin resistance is linked to altered plasma levels of triglycerides and HDL (high-density lipoprotein)-cholesterol. However, its degree of independence from liver resistance and different metabolic traits (lipolysis, lipogenesis) effected is not clear and was presently investigated. METHODS: In 3290 adult subjects, plasma levels of triglycerides and HDL-cholesterol were cross-sectionally measured and related to interindividual variations in measures of insulin resistance in the liver (homeostasis mode assessment of insulin resistance index) or adipose tissue (Adipo-IR index). In subgroups, insulin-induced antilipolysis and lipogenesis in isolated subcutaneous fat cells (n=578) were determined alongside global adipose tissue gene expression (n=132). RESULTS: Using linear regression, homeostasis mode assessment of insulin resistance and Adipo-IR strongly correlated with the plasma lipids explaining 33% of the variations in triglycerides. Together with other variables (age, sex, body mass index, cardiometabolic disorders, nicotine use, ethnicity, and physical activity) in multiple regression, homeostasis mode assessment of insulin resistance, and Adipo-IR each remained an important regressor for triglycerides and HDL-cholesterol (P<0.0001). In fat cells, half-maximum effective concentration but not maximum effect of insulin on antilipolysis and lipogenesis contributed independently to variations in triglycerides and HDL-cholesterol (P=0.001 or lower). This was linked to expression of the insulin receptor, insulin receptor substrate-1, and AKT serine/threonine kinase 2 in adipose tissue. CONCLUSIONS: Markers of insulin resistance in the liver and adipose tissue each associate strongly, and independently of each other, to elevated triglycerides and decreased HDL levels. At the fat cell, early insulin receptor signaling and sensitivity, but not maximum insulin action contributes to the variations in circulating triglycerides and HDL-cholesterol.


Asunto(s)
Dislipidemias , Resistencia a la Insulina , Adulto , Humanos , Receptor de Insulina , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Triglicéridos , Insulina , HDL-Colesterol , Hígado/metabolismo , Dislipidemias/diagnóstico , Dislipidemias/genética
6.
Am J Physiol Cell Physiol ; 325(5): C1178-C1189, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721003

RESUMEN

Obesity is a major risk factor for the development of nonalcoholic fatty liver disease (NAFLD), and the subcutaneous white adipose tissue (scWAT) is the primary lipid storage depot and regulates lipid fluxes to other organs. Our previous work identified genes upregulated in scWAT of patients with NAFLD: SOCS3, DUSP1, and SIK1. Herein, we knocked down (KD) their expression in human adipose-derived mesenchymal stem cells (hADMSCs) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and characterized their phenotype. We found that SOCS3, DUSP1, and SIK1 expression in hADMSC-derived adipocytes was not critical for adipogenesis. However, the metabolic characterization of the cells suggested that the genes played important roles in lipid metabolism. Reduction of SIK1 expression significantly increased both de novo lipogenesis (DNL) and palmitate-induced lipogenesis (PIL). Editing out SOCS3 reduced DNL while increasing isoproterenol-induced lipolysis and insulin-induced palmitate accumulation. Conversely, DUSP1 reduced PIL and DNL. Moreover, RNA-sequencing analysis of edited cells showed that these genes not only altered lipid metabolism but also other biological pathways related to inflammatory processes, in the case of DUSP1, extracellular matrix remodeling for SOCS3, or cellular transport for SIK1. Finally, to evaluate a possible adipocyte-hepatocyte axis, human hepatoma HepG2 cells were cocultured with edited hADMSCs-derived adipocytes in the presence of [3H]-palmitate. All HepG2 cells cultured with DUSP1-, SIK1-, or SOCS3-KD adipocytes decreased [3H]-palmitate accumulation compared with control adipocytes. These results support our hypotheses that SOCS3, DUSP1, and SIK1 regulate multiple aspects of adipocyte function, which may play a role in the progression of obesity-associated comorbidities, such as NAFLD.NEW & NOTEWORTHY Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology successfully edited genomic DNA of human adipose-derived mesenchymal stem cells (hADMSC). SOCS3, SIK1, and DUSP1 regulate adipocyte lipid handling. Silencing SOCS3, SIK1, and DUSP1 expression in hADMSC-derived adipocytes reduces hepatocyte lipid storage in vitro.

7.
Circulation ; 144(12): 961-982, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34255973

RESUMEN

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Asunto(s)
Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Hiperglucemia/inmunología , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Animales , Aterosclerosis/patología , Células Cultivadas , Diabetes Mellitus Experimental/patología , Endarterectomía Carotidea , Humanos , Hiperglucemia/patología , Leucocitos Mononucleares/patología , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
8.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34425095

RESUMEN

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Asunto(s)
Hígado Graso/enzimología , Fumarato Hidratasa/metabolismo , Resistencia a la Insulina , Hígado/enzimología , Macrófagos/enzimología , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Obesidad/enzimología , Animales , Carboxiliasas/genética , Carboxiliasas/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Hígado Graso/genética , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Obesidad/genética , Estrés Oxidativo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Succinatos/metabolismo
9.
J Intern Med ; 291(5): 611-621, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34914848

RESUMEN

Recent technological developments have allowed determination of the age of fat cells and their lipids in adult humans. In contrast to prior views, this has demonstrated a high turnover rate of the fat cells (10%/year) and their unilocular lipid droplets (six times/10 years). Fat cell turnover is increased in obesity and when adipose tissue is composed of many but small adipocytes (hyperplasia, a benign adipose phenotype). While fat mass gain increases adipocyte number and size, only the latter is altered (decreased) after weight loss, which may facilitate weight regain. Fat cell lipid turnover is attenuated in subjects with excess body fat. In the subcutaneous region, this dysregulation occurs already in the overweight state while in the visceral depot, it is only observed in severe obesity. This may explain why the latter depot is particularly pernicious in the overweight/obese state as it allows for more rapid lipid fluxes between visceral fat and the liver. Adipose lipid turnover decreases during ageing due to impaired breakdown (lipolysis) of stored triglycerides. If this decline is not compensated by reduced adipocyte lipid uptake, bodyweight will increase over time. In concordance with this, low lipolysis rates are a risk factor for future weight gain and glucose intolerance. Adipose lipid turnover is also decreased in insulin resistance and certain forms of dyslipidemia. Altogether, adult human adipose tissue is in a highly dynamic state. Alterations in the turnover of fat cells and their lipids are therefore novel factors to consider in the pathophysiology of common metabolic disorders.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Humanos , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Sobrepeso/metabolismo , Triglicéridos/metabolismo
10.
J Intern Med ; 292(4): 667-678, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35670497

RESUMEN

OBJECTIVE: Cross-sectional studies demonstrate that catecholamine stimulation of fat cell lipolysis is blunted in obesity. We investigated whether this defect persists after substantial weight loss has been induced by metabolic surgery, and whether it is related to the outcome. DESIGN/METHODS: Patients with obesity not able to successfully reduce body weight by conventional means (n = 126) were investigated before and 5 years after Roux-en-Y gastric bypass surgery (RYGB). They were compared with propensity-score matched subjects selected from a control group (n = 1017), and with the entire group after adjustment for age, sex, body mass index (BMI), fat cell volume and other clinical parameters. Catecholamine-stimulated lipolysis (glycerol release) was investigated in isolated fat cells using noradrenaline (natural hormone) or isoprenaline (synthetic beta-adrenoceptor agonist). RESULTS: Following RYGB, BMI was reduced from 39.9 (37.5-43.5) (median and interquartile range) to 29.5 (26.7-31.9) kg/m2 (p < 0.0001). The post-RYGB patients had about 50% lower lipolysis rates compared with the matched and total series of controls (p < 0.0005). Nordrenaline activation of lipolysis at baseline was associated with the RYGB effect; those with high lipolysis activation (upper tertile) lost 30%-45% more in body weight, BMI or fat mass than those with low (bottom tertile) initial lipolysis activation (p < 0.0007). CONCLUSION: Patients with obesity requiring metabolic surgery have impaired ability of catecholamines to stimulate lipolysis, which remains despite long-term normalization of body weight by RYGB. Furthermore, preoperative variations in the ability of catecholamines to activate lipolysis may predict the long-term reduction in body weight and fat mass.


Asunto(s)
Cirugía Bariátrica , Derivación Gástrica , Obesidad Mórbida , Índice de Masa Corporal , Peso Corporal , Catecolaminas/farmacología , Estudios Transversales , Glicerol , Hormonas , Humanos , Isoproterenol/farmacología , Lipólisis/fisiología , Norepinefrina , Obesidad/metabolismo , Obesidad/cirugía , Obesidad Mórbida/cirugía , Receptores Adrenérgicos/metabolismo , Resultado del Tratamiento
11.
J Intern Med ; 292(2): 296-307, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34982494

RESUMEN

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Asunto(s)
Hígado Graso , Insulinas , Esterol O-Aciltransferasa , Animales , Ésteres del Colesterol/metabolismo , Hígado Graso/metabolismo , Glucosa/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/metabolismo , Triglicéridos , Esterol O-Aciltransferasa 2
12.
Int J Obes (Lond) ; 46(6): 1196-1203, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35228658

RESUMEN

BACKGROUND/OBJECTIVE: The development of overweight/obesity associates with alterations in white adipose tissue (WAT) cellularity (fat cell size/number) and lipid metabolism, in particular lipolysis. If these changes differ between early/juvenile (EOO < 18 years of age) or late onset overweight/obesity (LOO) is unknown and was presently examined. SUBJECTS/METHODS: We included 439 subjects with validated information on body mass index (BMI) at 18 years of age. Using this information and current BMI, subjects were divided into never overweight/obese (BMI < 25 kg/m2), EOO and LOO. Adipocyte size, number, morphology (size in relation to body fat) and lipolysis were determined in subcutaneous abdominal WAT. Body composition and WAT distribution was assessed by dual-X-ray absorptiometry. RESULTS: Compared with never overweight/obese, EOO and LOO displayed larger WAT amounts in all examined depots, which in subcutaneous WAT was explained by a combination of increased size and number of fat cells in EOO and LOO. EOO had 40% larger subcutaneous fat mass than LOO (p < 0.0001). Visceral WAT mass, WAT morphology and lipolysis did not differ between EOO and LOO except for minor differences in men between the two obesity groups. On average, the increase in BMI per year was 57% higher in subjects with EOO compared to LOO (p < 0.0001). CONCLUSION: Early onset overweight/obesity causes a more rapid and pronounced accumulation of subcutaneous WAT than adult onset. However, fat mass expansion measures including WAT cellularity, morphology and fat cell lipolysis do not differ in an important way suggesting that similar mechanisms of WAT growth operate in EOO and LOO.


Asunto(s)
Sobrepeso , Grasa Subcutánea , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adulto , Humanos , Masculino , Obesidad/metabolismo , Sobrepeso/metabolismo , Grasa Subcutánea/metabolismo
14.
Handb Exp Pharmacol ; 274: 131-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35318510

RESUMEN

Technologies allowing studies at single-cell resolution have provided important insights into how different cell populations contribute to tissue function. Application of these methods to white adipose tissue (WAT) has revealed how various metabolic aspects of this organ, such as insulin response, inflammation and tissue expansion, are regulated by specific WAT resident cells, including different subtypes of adipocytes, adipocyte progenitors as well as immune and endothelial cells. In this chapter, we provide an overview of the different technical approaches, their strengths and weaknesses, and summarize how these studies have improved our understanding of WAT function in health and disease.


Asunto(s)
Células Endoteliales , Resistencia a la Insulina , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Células Endoteliales/metabolismo , Humanos , Obesidad/metabolismo
15.
Am J Physiol Cell Physiol ; 320(5): C822-C841, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439778

RESUMEN

Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.


Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/fisiología , Adipogénesis , Tejido Adiposo/citología , Animales , Comunicación Celular , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Humanos , Fenotipo , Especificidad de la Especie , Esferoides Celulares , Técnicas de Cultivo de Tejidos
16.
Int J Obes (Lond) ; 45(12): 2675-2678, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34321614

RESUMEN

Insulin resistance of glucose utilization is fully restored following BMI normalization after bariatric surgery. We investigated if this also pertains to insulin-induced effects on fatty acid handling. Forty-three women with obesity (OB) were investigated before and 2 years after Roux-en-Y gastric by-pass when BMI was <30 kg/m2 (PO) and compared with 26 never obese women (NO). The Adipo-IR index was used as measure of insulin antilipolytic sensitivity. Changes (delta) in circulating glycerol and fatty acid levels during hyperinsulinemic euglycemic clamp represented the insulin maximum antilipolytic effect. Overall fatty acid utilization was reflected by delta fatty acids minus 3 × delta glycerol. Adipo-IR was higher in OB than in NO and PO (p < 0.0001), the latter two groups having similar values. Insulin lowered glycerol levels by about 70% in all groups, but delta glycerol was 30% larger in PO than in NO (p = 0.04). Delta adds and adds utilization were similar in all groups. We conclude that women with obesity, whose BMI is normalized after bariatric surgery, have improved maximum in vivo antilipolytic effect of insulin above expected in absolute but not relative terms as regards glycerol changes, while the handling of circulating fatty acids is changed to the normal state.


Asunto(s)
Cirugía Bariátrica/efectos adversos , Insulina/efectos adversos , Lipólisis/efectos de los fármacos , Adulto , Cirugía Bariátrica/estadística & datos numéricos , Glucemia/análisis , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Femenino , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/fisiopatología , Insulina/uso terapéutico , Lipólisis/fisiología , Estudios Longitudinales , Persona de Mediana Edad
17.
Int J Obes (Lond) ; 45(5): 934-943, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33510393

RESUMEN

Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.


Asunto(s)
Tejido Adiposo Blanco/citología , Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Envejecimiento , Animales , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Obesidad , Senoterapéuticos
18.
Int J Obes (Lond) ; 44(12): 2436-2443, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398753

RESUMEN

BACKGROUND: Obesity is a major factor behind insulin resistance. The validity of simple biochemical surrogate measures to estimate insulin resistance at the fat cell level is unclear. OBJECTIVE: To investigate if the surrogate measures HOMA-IR (glucose/insulin product) and Adipo-IR (fatty acids/insulin product) reflect insulin action on glucose/lipid metabolism in fat cells. DESIGN: Insulin-induced lipogenesis and lipolysis inhibition (antilipolysis) in subcutaneous fat cells were investigated for sensitivity (reflecting receptor-near events) and responsiveness (i.e., maximum action reflecting distal post-receptor events) in 363 subjects. Results were compared with log10 transformed values for HOMA-IR and Adipo-IR. RESULTS: Individually, the four measures of in vitro insulin action on fat cells correlated significantly (p < 0.0001) but weakly with each other (adjusted r2 0.05-0.23). HOMA-IR and Adipo-IR correlated strongly with each other (adjusted r2 = 0.81). Using Spearman or simple linear regression all in vitro measures except antilipolytic responsiveness expressed per lipid weight, correlated significantly with Adipo-IR or HOMA-IR (p values <0.0001). Similar relationships remained after combined correction for age, body mass index and sex. Together, the four in vitro measures explained 50% of the variability in HOMA-IR and ADIPO-IR (p < 0.0001). Receiver-operating characteristic analysis showed good sensitivity and specificity for Adipo-IR and HOMA-IR to detect combined insulin resistance of antilipolysis and lipogenesis in fat cells (area under the curve = 0.8). CONCLUSIONS: Insulin action at the receptor and post-receptor levels on lipolysis and lipogenesis in fat cells correlates significantly with Adipo-IR and HOMA-IR. Both surrogate measures give similar information about insulin resistance of glucose and lipid metabolism in fat cells.


Asunto(s)
Adipocitos/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Adiposidad , Adolescente , Adulto , Biomarcadores/metabolismo , Índice de Masa Corporal , Células Cultivadas , Femenino , Humanos , Lipogénesis , Lipólisis , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Int J Obes (Lond) ; 44(2): 377-387, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31164724

RESUMEN

BACKGROUND: Transcriptome analysis of abdominal subcutaneous white adipose tissue (sWAT) has identified important obesity-associated disturbances. However, the relation between sWAT transcriptome and long-term future changes in body weight remains elusive. OBJECTIVE: To investigate sWAT transcriptome signatures before and after long-term weight changes and assess their predictive value for body weight changes. DESIGN: A total of 56 women were followed longitudinally and subdivided into weight-stable (WS, n = 25), weight-gaining (WG, n = 14) and weight-losing (WL, n = 17) groups between baseline and follow-up (13 ± 1 years). The fasting sWAT transcriptome was analyzed by gene microarray at baseline and follow-up. Key genes associated with weight changes were validated using quantitative real-time PCR. RESULTS: In total 285 transcripts exhibited difference (FDR < 30%) in expression fold change over time between WL and WS women. WL women displayed decreased pro-inflammatory (NLRP3) but increased insulin-response gene (FASN and GLUT4) expression over time. In comparison, 461 transcripts displayed difference in expression fold change over time between WG and WS women (P < 0.05). Genes involved in autophagic processes (CDK5, SQSTM1 and FBXL2) were generally upregulated in WG women. At baseline, 307 and 302 transcripts were differentially expressed (FDR < 30%) in WL and WG women, respectively, when independently compared against WS women. Baseline expression of adipogenic and lipogenic genes (PPARG, IRS2 and HACD2) was lower, while pro-fibrotic (COL6A1) was higher, in WL than WS women; whereas protein processing genes were lower expressed in WG than in WS women. CONCLUSION: In adult women, long-term body weight change associates with altered sWAT transcriptome. Expression of genes associated with inflammation, insulin response, adipogenesis and lipogenesis are linked to weight loss. However, other pathways such as autophagy not only associate but also predict future weight gain suggesting that intrinsic factors in sWAT impact tissue expansion.


Asunto(s)
Peso Corporal , Obesidad , Grasa Subcutánea Abdominal/metabolismo , Transcriptoma/genética , Adulto , Peso Corporal/genética , Peso Corporal/fisiología , Femenino , Humanos , Inflamación/genética , Lipogénesis/genética , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Estudios Prospectivos
20.
Diabetologia ; 61(5): 1112-1123, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29487953

RESUMEN

AIMS/HYPOTHESIS: By genome-wide association meta-analysis, 17 genetic loci associated with fasting serum insulin (FSI), a marker of systemic insulin resistance, have been identified. To define potential culprit genes in these loci, in a cross-sectional study we analysed white adipose tissue (WAT) expression of 120 genes in these loci in relation to systemic and adipose tissue variables, and functionally evaluated genes demonstrating genotype-specific expression in WAT (eQTLs). METHODS: Abdominal subcutaneous adipose tissue biopsies were obtained from 114 women. Basal lipolytic activity was measured as glycerol release from adipose tissue explants. Adipocytes were isolated and insulin-stimulated incorporation of radiolabelled glucose into lipids was used to quantify adipocyte insulin sensitivity. Small interfering RNA-mediated knockout in human mesenchymal stem cells was used for functional evaluation of genes. RESULTS: Adipose expression of 48 of the studied candidate genes associated significantly with FSI, whereas expression of 24, 17 and 2 genes, respectively, associated with adipocyte insulin sensitivity, lipolysis and/or WAT morphology (i.e. fat cell size relative to total body fat mass). Four genetic loci contained eQTLs. In one chromosome 4 locus (rs3822072), the FSI-increasing allele associated with lower FAM13A expression and FAM13A expression associated with a beneficial metabolic profile including decreased WAT lipolysis (regression coefficient, R = -0.50, p = 5.6 × 10-7). Knockdown of FAM13A increased lipolysis by ~1.5-fold and the expression of LIPE (encoding hormone-sensitive lipase, a rate-limiting enzyme in lipolysis). At the chromosome 7 locus (rs1167800), the FSI-increasing allele associated with lower POM121C expression. Consistent with an insulin-sensitising function, POM121C expression associated with systemic insulin sensitivity (R = -0.22, p = 2.0 × 10-2), adipocyte insulin sensitivity (R = 0.28, p = 3.4 × 10-3) and adipose hyperplasia (R = -0.29, p = 2.6 × 10-2). POM121C knockdown decreased expression of all adipocyte-specific markers by 25-50%, suggesting that POM121C is necessary for adipogenesis. CONCLUSIONS/INTERPRETATION: Gene expression and adipocyte functional studies support the notion that FAM13A and POM121C control adipocyte lipolysis and adipogenesis, respectively, and might thereby be involved in genetic control of systemic insulin sensitivity.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Glicoproteínas de Membrana/genética , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Adiposidad , Adulto , Ayuno , Femenino , Estudios de Seguimiento , Genotipo , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Lipólisis , Persona de Mediana Edad , Obesidad/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA