Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stat Med ; 42(23): 4128-4146, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37485617

RESUMEN

Diabetic neuropathy is a disorder characterized by impaired nerve function and reduction of the number of epidermal nerve fibers per epidermal surface. Additionally, as neuropathy related nerve fiber loss and regrowth progresses over time, the two-dimensional spatial arrangement of the nerves becomes more clustered. These observations suggest that with development of neuropathy, the spatial pattern of diminished skin innervation is defined by a thinning process which remains incompletely characterized. We regard samples obtained from healthy controls and subjects suffering from diabetic neuropathy as realisations of planar point processes consisting of nerve entry points and nerve endings, and propose point process models based on spatial thinning to describe the change as neuropathy advances. Initially, the hypothesis that the nerve removal occurs completely at random is tested using independent random thinning of healthy patterns. Then, a dependent parametric thinning model that favors the removal of isolated nerve trees is proposed. Approximate Bayesian computation is used to infer the distribution of the model parameters, and the goodness-of-fit of the models is evaluated using both non-spatial and spatial summary statistics. Our findings suggest that the nerve mortality process changes as neuropathy advances.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Humanos , Teorema de Bayes , Piel/inervación , Epidermis/inervación , Modelos Estadísticos
2.
J Microsc ; 288(1): 54-67, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106649

RESUMEN

In this paper, the spatial arrangement and possible interactions between epidermal nerve fibre endings are investigated and modelled by using confocal microscopy data. We are especially interested in possible differences between patterns from healthy volunteers and patients suffering from mild diabetic neuropathy. The locations of the points, where nerves enter the epidermis, the first branching points and the points where the nerve fibres terminate, are regarded as realizations of spatial point processes. We propose an anisotropic point process model for the locations of the nerve fibre endings in three dimensions, where the points interact in cylindrical regions. First, the locations of end points in R 2 $\mathbb {R}^2$ are modelled as clusters around the branching points and then, the model is extended to three dimensions using a pairwise interaction Markov field model with cylindrical neighbourhood for the z-coordinates conditioned on the planar locations of the points. We fit the model to samples taken from healthy subjects and subjects suffering from diabetic neuropathy. In both groups, after a hardcore radius, there is some attraction between the end points. However, the range and strength of attraction are not the same in the two groups. Performance of the model is evaluated by using a cylindrical version of Ripley's K function due to the anisotropic nature of the data. Our findings suggest that the proposed model is able to capture the 3D spatial structure of the end points.


Asunto(s)
Neuropatías Diabéticas , Epidermis , Humanos , Microscopía Confocal , Fibras Nerviosas/química , Fibras Nerviosas/fisiología
3.
Soft Matter ; 18(16): 3206-3217, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35383800

RESUMEN

Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 µm for bicontinuous and between 0.6 and 1.6 µm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release.


Asunto(s)
Agua , Celulosa/análogos & derivados , Cinética , Porosidad , Solventes , Agua/química
4.
J Microsc ; 283(1): 41-50, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788279

RESUMEN

Epidermal nerve fibre (ENF) density and summed length of ENFs per epidermal surface area are reduced, and ENFs may appear more clustered within the epidermis in subjects suffering from diabetic neuropathy compared to healthy subjects. Therefore, it is important to understand the spatial behaviour of ENFs in healthy and neuropathy subjects. By using confocal microscopy data , we study the spatial structure of epidermal nerves by regarding the nerve tree locations as realizations of marked point processes . The termination points of the fibres of a nerve tree are used to define a reactive territory which is taken as a mark for the nerve tree location. We study the differences in the spatial pattern of ENFs between healthy subjects and subjects suffering from mild diabetic neuropathy by using Ripley's K function and the mark correlation function. In addition, we propose a marked sequential point process model for the nerve tree locations. Data are replicated point patterns, where we have several patterns from each subject and from each group.


Asunto(s)
Neuropatías Diabéticas , Epidermis , Humanos , Microscopía Confocal , Fibras Nerviosas
5.
Stat Med ; 40(29): 6479-6500, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34523143

RESUMEN

Peripheral neuropathy is a condition associated with poor nerve functionality. Epidermal nerve fiber (ENF) counts per epidermal surface are dramatically reduced and the two-dimensional (2D) spatial structure of ENFs tends to become more clustered as neuropathy progresses. Therefore, studying the spatial structure of ENFs is essential to fully understand the mechanisms that guide those morphological changes. In this article, we compare ENF patterns of healthy controls and subjects suffering from mild diabetic neuropathy by using suction skin blister specimens obtained from the right foot. Previous analysis of these data has focused on the analysis and modeling of the spatial ENF patterns consisting of the points where the nerves enter the epidermis, base points, and the points where the nerve fibers terminate, end points, projected on a 2D plane, regarding the patterns as realizations of spatial point processes. Here, we include the first branching points, the points where the nerve trees branch for the first time, and model the three-dimensional (3D) patterns consisting of these three types of points. To analyze the patterns, spatial summary statistics are used and a new epidermal active territory that measures the volume in the epidermis that is covered by the individual nerve fibers is constructed. We developed a model for both the 2D and the 3D patterns including the branching points. Also, possible competitive behavior between individual nerves is examined. Our results indicate that changes in the ENFs spatial structure can more easily be detected in the later parts of the ENFs.


Asunto(s)
Neuropatías Diabéticas , Fibras Nerviosas , Epidermis/inervación , Humanos
6.
Stat Med ; 40(8): 2055-2072, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33517587

RESUMEN

The aim of this article is to construct spatial models for the activation of sweat glands for healthy subjects and subjects suffering from peripheral neuropathy by using videos of sweating recorded from the subjects. The sweat patterns are regarded as realizations of spatial point processes and two point process models for the sweat gland activation and two methods for inference are proposed. Several image analysis steps are needed to extract the point patterns from the videos and some incorrectly identified sweat gland locations may be present in the data. To take into account the errors, we either include an error term in the point process model or use an estimation procedure that is robust with respect to the errors.


Asunto(s)
Glándulas Sudoríparas , Sudoración , Humanos , Procesamiento de Imagen Asistido por Computador
7.
Soft Matter ; 17(14): 3913-3922, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33710242

RESUMEN

Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures.


Asunto(s)
Celulosa , Polímeros , Celulosa/análogos & derivados , Solventes
8.
Microsc Microanal ; 26(4): 837-845, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32438937

RESUMEN

Tomography using a focused ion beam (FIB) combined with a scanning electron microscope (SEM) is well-established for a wide range of conducting materials. However, performing FIB­SEM tomography on ion- and electron-beam-sensitive materials as well as poorly conducting soft materials remains challenging. Some common challenges include cross-sectioning artifacts, shadowing effects, and charging. Fully dense materials provide a planar cross section, whereas pores also expose subsurface areas of the planar cross-section surface. The image intensity of the subsurface areas gives rise to overlap between the grayscale intensity levels of the solid and pore areas, which complicates image processing and segmentation for three-dimensional (3D) reconstruction. To avoid the introduction of artifacts, the goal is to examine porous and poorly conducting soft materials as close as possible to their original state. This work presents a protocol for the optimization of FIB­SEM tomography parameters for porous and poorly conducting soft materials. The protocol reduces cross-sectioning artifacts, charging, and eliminates shadowing effects. In addition, it handles the subsurface and grayscale intensity overlap problems in image segmentation. The protocol was evaluated on porous polymer films which have both poor conductivity and pores. 3D reconstructions, with automated data segmentation, from three films with different porosities were successfully obtained.

9.
Biophys J ; 117(10): 1900-1914, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31668746

RESUMEN

Raster image correlation spectroscopy (RICS) is a fluorescence image analysis method for extracting the mobility, concentration, and stoichiometry of diffusing fluorescent molecules from confocal image stacks. The method works by calculating a spatial correlation function for each image and analyzing the average of those by model fitting. Rules of thumb exist for RICS image acquisitioning, yet a rigorous theoretical approach to predict the accuracy and precision of the recovered parameters has been lacking. We outline explicit expressions to reveal the dependence of RICS results on experimental parameters. In terms of imaging settings, we observed that a twofold decrease of the pixel size, e.g., from 100 to 50 nm, decreases the error on the translational diffusion constant (D) between three- and fivefold. For D = 1 µm2 s-1, a typical value for intracellular measurements, ∼25-fold lower mean-squared relative error was obtained when the optimal scan speed was used, although more drastic improvements were observed for other values of D. We proposed a slightly modified RICS calculation that allows correcting for the significant bias of the autocorrelation function at small (≪50 × 50 pixels) sizes of the region of interest. In terms of sample properties, at molecular brightness E = 100 kHz and higher, RICS data quality was sufficient using as little as 20 images, whereas the optimal number of frames for lower E scaled pro rata. RICS data quality was constant over the nM-µM concentration range. We developed a bootstrap-based confidence interval of D that outperformed the classical least-squares approach in terms of coverage probability of the true value of D. We validated the theory via in vitro experiments of enhanced green fluorescent protein at different buffer viscosities. Finally, we outline robust practical guidelines and provide free software to simulate the parameter effects on recovery of the diffusion coefficient.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis Espectral , Algoritmos , Simulación por Computador , Intervalos de Confianza , Proteínas Fluorescentes Verdes/metabolismo , Método de Montecarlo , Probabilidad
10.
J Microsc ; 275(3): 149-158, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31268556

RESUMEN

Colloidal systems are of importance not only for everyday products, but also for the development of new advanced materials. In many applications, it is crucial to understand and control colloidal interaction. In this paper, we study colloidal particle aggregation of silica nanoparticles, where the data are given in a three-dimensional micrograph obtained by high-angle annular dark field scanning transmission electron microscopy tomography. We investigate whether dynamic models for particle aggregation, namely the diffusion limited cluster aggregation and the reaction limited cluster aggregation models, can be used to construct structures present in the scanning transmission electron microscopy data. We compare the experimentally obtained silica aggregate to the simulated postaggregated structures obtained by the dynamic models. In addition, we fit static Gibbs point process models, which are commonly used models for point patterns with interactions, to the silica data. We were able to simulate structures similar to the silica structures by using Gibbs point process models. By fitting Gibbs models to the simulated cluster aggregation patterns, we saw that a smaller probability of aggregation would be needed to construct structures similar to the observed silica particle structure.

11.
Stat Med ; 37(3): 357-374, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29114916

RESUMEN

While epidermal nerve fiber (ENF) data have been used to study the effects of small fiber neuropathies through the density and the spatial patterns of the ENFs, little research has been focused on the effects on the individual nerve fibers. Studying the individual nerve fibers might give a better understanding of the effects of the neuropathy on the growth process of the individual ENFs. In this study, data from 32 healthy volunteers and 20 diabetic subjects, obtained from suction induced skin blister biopsies, are analyzed by comparing statistics for the nerve fibers as a whole and for the segments that a nerve fiber is composed of. Moreover, it is evaluated whether this type of data can be used to detect diabetic neuropathy, by using hierarchical models to perform unsupervised classification of the subjects. It is found that using the information about the individual nerve fibers in combination with the ENF counts yields a considerable improvement as compared to using the ENF counts only.


Asunto(s)
Biometría/métodos , Neuropatías Diabéticas/diagnóstico , Modelos Lineales , Fibras Nerviosas/patología , Algoritmos , Biopsia , Epidermis , Humanos , Modelos Estadísticos , Método de Montecarlo , Índice de Severidad de la Enfermedad
12.
Biom J ; 59(6): 1352-1381, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28699334

RESUMEN

We develop a two-stage spatial point process model that introduces new characterizations of activation patterns in multisubject functional Magnetic Resonance Imaging (fMRI) studies. Conventionally multisubject fMRI methods rely on combining information across subjects one voxel at a time in order to identify locations of peak activation in the brain. The two-stage model that we develop here addresses shortcomings of standard methods by explicitly modeling the spatial structure of functional signals and recognizing that corresponding cross-subject functional signals can be spatially misaligned. In our first stage analysis, we introduce a marked spatial point process model that captures the spatial features of the functional response and identifies a configuration of activation units for each subject. The locations of these activation units are used as input for the second stage model. The point process model of the second stage analysis is developed to characterize multisubject activation patterns by estimating the strength of cross-subject interactions at different spatial ranges. The model uses spatial neighborhoods to account for the cross-subject spatial misalignment in corresponding functional units. We applied our methods to an fMRI study of 21 individuals who performed an attention test. We identified four brain regions that are involved in the test and found that our model results agree well with our understanding of how these regions engage with the tasks performed during the attention test. Our results highlighted that cross-subject interactions are stronger in brain areas that have a more specific function in performing the experimental tasks than in other areas.


Asunto(s)
Biometría/métodos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Modelos Estadísticos , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Stat Med ; 35(24): 4427-4442, 2016 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-27311590

RESUMEN

Epidermal nerve fibre (ENF) density and morphology are used to study small fibre involvement in diabetic, HIV, chemotherapy induced and other neuropathies. ENF density and summed length of ENFs per epidermal surface area are reduced, and ENFs may appear more clustered within the epidermis in subjects with small fibre neuropathy than in healthy subjects. Therefore, it is important to understand the spatial structure of ENFs. In this paper, we compare the ENF patterns between healthy subjects and subjects suffering from mild diabetic neuropathy. The study is based on suction skin blister specimens from the right foot of 32 healthy subjects and eight subjects with mild diabetic neuropathy. We regard the ENF entry point (location where the trunks of a nerve enters the epidermis) and ENF end point (termination of the nerve fibres) patterns as realizations of spatial point processes, and develop tools that can be used in the analysis and modelling of ENF patterns. We use spatial summary statistics and shift plots and define a new tool, reactive territory, to study the spatial patterns and to compare the patterns of the two groups. We will also introduce a simple model for these data in order to understand the growth process of the nerve fibres. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neuropatías Diabéticas/diagnóstico , Modelos Estadísticos , Fibras Nerviosas , Epidermis , Humanos , Piel
14.
J Phys Chem B ; 128(18): 4513-4524, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38686494

RESUMEN

In this study, we investigate the aggregation dynamics of colloidal silica by generating simulated structures and comparing them to experimental data gathered through scanning transmission electron microscopy (STEM). More specifically, diffusion-limited cluster aggregation and reaction-limited cluster aggregation models with different functions for the probability of particles sticking upon contact were used. Aside from using a constant sticking probability, the sticking probability was allowed to depend on the masses of the colliding clusters and on the number of particles close to the collision between clusters. The different models of the sticking probability were evaluated based on the goodness-of-fit of spatial summary statistics. Furthermore, the models were compared to the experimental data by calculating the structures' fractal dimension and mass transport properties from simulations of flow and diffusion. The sticking probability, depending on the interaction with multiple particles close to the collision site, led to structures most similar to the STEM data.

15.
Int J Pharm ; 644: 123350, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37640089

RESUMEN

Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. Water-soluble HPC leaches out and forms a porous structure that controls the drug transport. Industrially, the pellets are coated using a fluidized bed spraying device, and a layered film exhibiting varying porosity and structure after leaching is obtained. A detailed understanding of the formation of the multilayered, phase-separated structure during production is lacking. Here, we have investigated multilayered EC/HPC films produced by sequential spin-coating, which was used to mimic the industrial process. The effects of EC/HPC ratio and spin speed on the multilayer film formation and structure were investigated using advanced microscopy techniques and image analysis. Cahn-Hilliard simulations were performed to analyze the mixing behavior. A gradient with larger structures close to the substrate surface and smaller structures close to the air surface was formed due to coarsening of the layers already coated during successive deposition cycles. The porosity of the multilayer film was found to vary with both EC/HPC ratio and spin speed. Simulation of the mixing behavior and in situ characterization of the structure evolution showed that the origin of the discontinuities and multilayer structure can be explained by the non-mixing of the layers.


Asunto(s)
Celulosa , Liberación de Fármacos , Transporte Biológico
16.
RSC Adv ; 12(40): 26078-26089, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36275112

RESUMEN

Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. The films are applied on the pellets using fluidized bed spraying. The drug transport rate is determined by the structure of the porous films that are formed as the water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure during production is lacking. Here, we have investigated EC/HPC films produced by spin-coating, which mimics the industrial manufacturing process. This work aimed to understand the structure formation and film shrinkage during solvent evaporation. The cross-sectional structure evolution was characterized using confocal laser scanning microscopy (CLSM), profilometry and image analysis. The effect of the EC/HPC ratio on the cross-sectional structure evolution was investigated. During shrinkage of the film, the phase-separated structure undergoes a transition from 3D to nearly 2D structure evolution along the surface. This transition appears when the typical length scale of the phase-separated structure is on the order of the thickness of the film. This was particularly pronounced for the bicontinuous systems. The shrinkage rate was found to be independent of the EC/HPC ratio, while the initial and final film thickness increased with increasing HPC fraction. A new method to estimate part of the binodal curve in the ternary phase diagram for EC/HPC in ethanol has been developed. The findings of this work provide a good understanding of the mechanisms responsible for the morphology development and allow tailoring of thin EC/HPC films structure for controlled drug release.

17.
Stat Med ; 30(23): 2827-41, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21823143

RESUMEN

Breakthroughs in imaging of skin tissue reveal new details on the distribution of nerve fibers in the epidermis. Preliminary neurologic studies indicate qualitative differences in the spatial patterns of nerve fibers based on pathophysiologic conditions in the subjects. Of particular interest is the evolution of spatial patterns observed in the progression of diabetic neuropathy. It appears that the spatial distribution of nerve fibers becomes more 'clustered' as neuropathy advances, suggesting the possibility of diagnostic prediction based on patterns observed in skin biopsies. We consider two approaches to establish statistical inference relating to this observation. First, we view the set of locations where the nerves enter the epidermis from the dermis as a realization of a spatial point process. Secondly, we treat the set of fibers as a realization of a planar fiber process. In both cases, we use estimated second-order properties of the observed data patterns to describe the degree and scale of clustering observed in the microscope images of blister biopsies. We illustrate the methods using confocal microscopy blister images taken from the thigh of one normal (disease-free) individual and two images each taken from the thighs of subjects with mild, moderate, and severe diabetes and report measurable differences in the spatial patterns of nerve entry points/fibers associated with disease status.


Asunto(s)
Interpretación Estadística de Datos , Neuropatías Diabéticas/patología , Fibras Nerviosas/patología , Piel/inervación , Simulación por Computador , Humanos , Microscopía Confocal , Método de Montecarlo , Fibras Nerviosas/ultraestructura , Piel/ultraestructura
18.
Biom J ; 51(3): 522-39, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19572316

RESUMEN

The aim of the paper is to apply point processes to root data modelling. We propose a new approach to parametric inference when the data are inhomogeneous replicated marked point patterns. We generalize Geyer's saturation point process to a model, which combines inhomogeneity, marks and interaction between the marked points. Furthermore, the inhomogeneity influences the definition of the neighbourhood of points. Using the maximum pseudolikelihood method, this model is then fitted to root data from mixed stands of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) to quantify the degree of root aggregation in such mixed stands. According to the analysis there is no evidence that the two root systems are not independent.


Asunto(s)
Agricultura/métodos , Biometría/métodos , Interpretación Estadística de Datos , Modelos Biológicos , Modelos Estadísticos , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Simulación por Computador
19.
J Control Release ; 222: 151-8, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26686080

RESUMEN

The characterization of the pore structure in pharmaceutical coatings is crucial for understanding and controlling mass transport properties and function in controlled drug release. Since the drug release rate can be associated with the film permeability, the effect of the pore structure on the permeability is important to study. In this paper, a new approach for characterizing the pore structure in polymer blended films was developed based on an image processing procedure for given two-dimensional scanning electron microscopy images of film cross-sections. The focus was on different measures for characterizing the complexity of the shape of a pore. The pore characterization developed was applied to ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) blended films, often used as pharmaceutical coatings, where HPC acts as the pore former. It was studied how two different HPC viscosity grades influence the pore structure and, hence, mass transport through the respective films. The film with higher HPC viscosity grade had been observed to be more permeable than the other in a previous study; however, experiments had failed to show a difference between their pore structures. By instead characterizing the pore structures using tools from image analysis, statistically significant differences in pore area fraction and pore shape were identified. More specifically, it was found that the more permeable film with higher HPC viscosity grade seemed to have more extended and complex pore shapes than the film with lower HPC viscosity grade. This result indicates a greater degree of connectivity in the film with higher permeability and statistically confirms hypotheses on permeability from related experimental studies.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos , Permeabilidad , Porosidad , Viscosidad , Agua/química
20.
Math Biosci ; 248: 140-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24418008

RESUMEN

Particle tracking is a widely used and promising technique for elucidating complex dynamics of the living cell. The cytoplasm is an active material, in which the kinetics of intracellular structures are highly heterogeneous. Tracer particles typically undergo a combination of random motion and various types of directed motion caused by the activity of molecular motors and other non-equilibrium processes. Random switching between more and less directional persistence of motion generally occurs. We present a method for identifying states of motion with different directional persistence in individual particle trajectories. Our analysis is based on a multi-scale turning angle model to characterize motion locally, together with a Hidden Markov Model with two states representing different directional persistence. We define one of the states by the motion of particles in a reference data set where some active processes have been inhibited. We illustrate the usefulness of the method by studying transport of vesicles along microtubules and transport of nanospheres activated by myosin. We study the results using mean square displacements, durations, and particle speeds within each state. We conclude that the method provides accurate identification of states of motion with different directional persistence, with very good agreement in terms of mean-squared displacement between the reference data set and one of the states in the two-state model.


Asunto(s)
Citoplasma/fisiología , Cadenas de Markov , Modelos Biológicos , Animales , Transporte Biológico Activo , Fenómenos Biofísicos , Línea Celular , Conceptos Matemáticos , Microtúbulos/fisiología , Proteínas Motoras Moleculares/fisiología , Movimiento (Física) , Miosinas/fisiología , Nanosferas , Poliestirenos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA