Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Nephrol ; 25(1): 352, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39407183

RESUMEN

BACKGROUND: There is a need to develop accurate and reliable non-invasive methods to evaluate chronic kidney disease (CKD) status and assess disease progression. Given it is recognized that dysregulation in metabolic pathways occur from early CKD, there is a basis in utilizing metabolomic biomarkers to monitor CKD progression. Volatile Organic Compounds (VOCs), a form of metabolomic biomarker, are gaseous products of metabolic processes in organisms which are typically released with greater abundance in disease conditions when there is dysregulation in metabolism. How urinary VOCs reflect the abnormal metabolic profile of patients with CKD status is unknown. Our study aimed to explore this. METHODS: Individuals aged 18-75 years undergoing kidney biopsy were included. Pre-biopsy urine samples were collected. All biopsy samples had an interstitial fibrosis and tubular atrophy (IFTA) grade scored by standardized assessment. Urine supernatant was extracted from residue and sampled for stir bar sorptive extraction followed by Gas chromatography-mass spectrometry (GC-MS) analysis. Post-processing of GC-MS data separated complex mixtures of VOCs based on their volatility and polarity. Mass-to-charge ratios and fragment patterns were measured for individual VOCs identification and quantification. Linear discriminant analysis (LDA) was performed to assess the ability of urinary VOCs in discriminating between IFTA 0 ('no or minimal IFTA' i.e. <10%, IFTA), IFTA 1 ('mild IFTA' i.e. 10-25% IFTA) and IFTA ≥ 2 ('moderate or severe IFTA' i.e. >25% IFTA). Linear regression analysis adjusting for age, sex, estimated glomerular filtration rate, diabetes mellitus (DM) status, and albuminuria was conducted to determine significantly regulated urinary VOCs amongst the groups. RESULTS: 64 study participants (22 individuals IFTA 0, 15 individuals IFTA 1, 27 individuals IFTA ≥ 2) were included. There were 34 VOCs identified from GC-MS which were statistically associated with correct classification between the IFTA groups, and LDA demonstrated individuals with IFTA 0, IFTA 1 and IFTA ≥ 2 could be significantly separated by their urinary VOCs profile (p < 0.001). Multivariate linear regression analysis reported 4 VOCs significantly upregulated in the IFTA 1 compared to the IFTA 0 group, and 2 VOCs significantly upregulated in the IFTA ≥ 2 compared to the IFTA 1 group (p < 0.05). Significantly upregulated urinary VOCs belonged to one of four functional groups - aldehydes, ketones, hydrocarbons, or alcohols. CONCLUSIONS: We report novel links between urinary VOCs and tubulointerstitial histopathology. Our findings suggest the application of urinary VOCs as a metabolomic biomarker may have a useful clinical role to non-invasively assess CKD status during disease progression.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Metabolómica , Insuficiencia Renal Crónica , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/orina , Persona de Mediana Edad , Insuficiencia Renal Crónica/orina , Masculino , Adulto , Biomarcadores/orina , Femenino , Anciano , Metabolómica/métodos , Adulto Joven , Cromatografía de Gases y Espectrometría de Masas , Adolescente
2.
J Physiol ; 601(14): 2801-2826, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37227074

RESUMEN

Renal fibrosis is the final common pathophysiological pathway in chronic kidney disease (CKD) regardless of the underlying cause of kidney injury. Tubulointerstitial fibrosis (TIF) is considered to be the key pathological predictor of CKD progression. Currently, the gold-standard tool to identify TIF is kidney biopsy, an invasive method that carries risks. Non-invasive diagnostics rely on an estimation of glomerular filtration rate and albuminuria to assess kidney function, but these fail to diagnose early CKD accurately or to predict progressive decline in kidney function. In this review, we summarize the current and emerging molecular biomarkers that have been studied in various clinical settings and in animal models of kidney disease and that are correlated with the degree of TIF. We examine the potential of these biomarkers to diagnose TIF non-invasively and to predict disease progression. We also examine the potential of new technologies and non-invasive diagnostic approaches in assessing TIF. Limitations of current and potential biomarkers are discussed and knowledge gaps identified.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Animales , Pronóstico , Riñón/metabolismo , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Biomarcadores/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769148

RESUMEN

Precise characterization of a tissue's extracellular matrix (ECM) protein composition (matrisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified 113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised 45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM proteins were primarily involved in cellular, developmental and metabolic processes, as well as in molecular binding and regulation of catalytic and structural molecules' activity. We also performed in silico comparative analysis of the kidney matrisome composition in humans and mice based on publicly available data. These results contribute to the first reference database for the mouse renal matrisome.


Asunto(s)
Proteínas de la Matriz Extracelular , Espectrometría de Masas en Tándem , Humanos , Ratones , Animales , Proteínas de la Matriz Extracelular/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Matriz Extracelular/metabolismo , Riñón/metabolismo
4.
Diabetes Obes Metab ; 24(10): 1939-1949, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635331

RESUMEN

AIM: To determine, using a mouse model of obesity, whether low-dose hydralazine prevents obesity-related chronic kidney disease (CKD). METHODS: From 8 weeks of age, male C57BL/6 mice received a high-fat diet (HFD) or chow, with or without low-dose hydralazine (25 mg/L) in drinking water, for 24 weeks. Biometric and metabolic variables, renal function and structural changes, renal global DNA methylation, DNA methylation profile and markers of renal fibrosis, injury, inflammation and oxidative stress were assessed. RESULTS: The HFD-fed mice developed obesity, with glucose intolerance, hyperinsulinaemia and dyslipidaemia. Obesity increased albuminuria and glomerulosclerosis, which were significantly ameliorated by low-dose hydralazine in the absence of a blood pressure-lowering effect. Obesity increased renal global DNA methylation and this was attenuated by low-dose hydralazine. HFD-induced changes in methylation of individual loci were also significantly reversed by low-dose hydralazine. Obese mice demonstrated increased markers of kidney fibrosis, inflammation and oxidative stress, but these markers were not significantly improved by hydralazine. CONCLUSION: Low-dose hydralazine ameliorated HFD-induced albuminuria and glomerulosclerosis, independent of alterations in biometric and metabolic variables or blood pressure regulation. Although the precise mechanism of renoprotection in obesity is unclear, an epigenetic basis may be implicated. These data support repurposing hydralazine as a novel therapy to prevent CKD progression in obese patients.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Albuminuria/tratamiento farmacológico , Albuminuria/etiología , Albuminuria/prevención & control , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Fibrosis , Hidralazina/farmacología , Hidralazina/uso terapéutico , Inflamación/metabolismo , Riñón , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
5.
Environ Res ; 212(Pt C): 113378, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35525290

RESUMEN

Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 µm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/inducido químicamente , Asma/epidemiología , Humanos , Inflamación/inducido químicamente , Material Particulado/análisis , Material Particulado/toxicidad
6.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35886957

RESUMEN

Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.


Asunto(s)
Insuficiencia Renal Crónica , Biomarcadores , Creatinina , Diagnóstico Precoz , Humanos , Riñón/patología , Insuficiencia Renal Crónica/complicaciones
7.
Brain Behav Immun ; 92: 57-66, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221488

RESUMEN

Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Encéfalo , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina
8.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502562

RESUMEN

Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely to be involved in the initiation and progression of DKD. An extensive number of studies have demonstrated the role of microbiota in health and disease. Dysregulation in the microbiota resulting in a deficiency of short chain fatty acids (SCFAs) such as propionate, acetate, and butyrate, by-products of healthy gut microbiota metabolism, have been demonstrated in obesity, type 1 and type 2 diabetes. However, it is not clear to date whether such changes in the microbiota are causative or merely associated with the diseases. It is also not clear which microbiota have protective effects on humans. Few studies have investigated the centrality of reduced SCFA in DKD development and progression or the potential therapeutic effects of supplemental SCFAs on insulin resistance, inflammation, and metabolic changes. SCFA receptors are expressed in the kidneys, and emerging data have demonstrated that intestinal dysbiosis activates the renal renin-angiotensin system, which contributes to the development of DKD. In this review, we will summarize the complex relationship between the gut microbiota and the kidney, examine the evidence for the role of gut dysbiosis in diabetes and obesity-related kidney disease, and explore the mechanisms involved. In addition, we will describe the role of potential therapies that modulate the gut microbiota to prevent or reduce kidney disease progression.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Disbiosis/metabolismo , Microbioma Gastrointestinal/fisiología , Obesidad/metabolismo , Animales , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Nefropatías Diabéticas/fisiopatología , Ácidos Grasos Volátiles/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Obesidad/fisiopatología
9.
Nitric Oxide ; 97: 57-65, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061903

RESUMEN

Research has attributed tissue damage post-traumatic brain injury (TBI) to two-pronged effects, increased reactive oxygen species (ROS) and impairment of endogenous antioxidant defence systems, underpinned by manganese superoxide dismutase (MnSOD). Novel antioxidant nitroxides have been shown to mimic MnSOD to ameliorate oxidative stress related disorders. This study aimed to investigate the effects of two nitroxides, CTMIO and DCTEIO, on the neurological outcomes following moderate TBI in rats induced by a weight drop device. The rats were immediately treated with CTMIO and DCTEIO (40 mM in drinking water) post-injury for up to 2 weeks. The brains were histologically examined at 24 h and 6 weeks post injury. DCTEIO reduced the lesion size at both 24h and 6 weeks, with normalised performance in sensory, motor and cognitive tests at 24h post-injury. Astrogliosis was heightened by DCTEIO at 24h and still elevated at 6 weeks in this group. In TBI brains, cellular damage was evident as reflected by changes in markers of mitophagy and autophagy (increased fission marker dynamin-related protein (Drp)-1, and autophagy marker light chain 3 (LC3)A/B and reduced fusion marker optic atrophy (Opa)-1). These were normalised by DCTEIO treatment. CTMIO, on the other hand, seems to be toxic to the injured brains, by increasing injury size at 6 weeks. In conclusion, DCTEIO significantly improved tissue repair and preserved neurological function in rats with TBI possibly via a mitophagy mechanism. This study provides evidence for DCTEIO as a promising new option to alleviate lesion severity after moderate TBI, which is not actively treated.


Asunto(s)
Antioxidantes/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Trastornos Neurocognitivos/tratamiento farmacológico , Óxidos de Nitrógeno/farmacología , Animales , Antioxidantes/química , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Femenino , Estructura Molecular , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Óxidos de Nitrógeno/química , Ratas , Ratas Sprague-Dawley
10.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027895

RESUMEN

Maternal obesity can contribute to the development of obesity and related metabolic disorders in progeny. Sirtuin (SIRT)1, an essential regulator of metabolism and stress responses, has recently emerged as an important modifying factor of developmental programming. In this study, to elucidate the effects of parental SIRT1 overexpression on offspring mechanism, four experimental groups were included: (1) Chow-fed wild-type (WT)-dam × Chow-fed WT-sire; (2) High-fat diet (HFD)-fed WT-dam × Chow-fed WT-sire; (3) HFD-fed hemizygous SIRT1-transgenic (Tg)-dam × Chow-fed WT-sire; and (4) HFD-fed WT dam × Chow-fed Tg-sire. Our results indicate that Tg breeders had lower body weight and fat mass compared to WT counterparts and gave birth to WT offspring with reductions in body weight, adiposity and hyperlipidaemia compared to those born of WT parents. Maternal SIRT1 overexpression also reversed glucose intolerance, and normalised abnormal fat morphology and the expression of dysregulated lipid metabolism markers, including SIRT1. Despite having persistent hepatic steatosis, offspring born to Tg parents showed an improved balance of hepatic glucose/lipid metabolic markers, as well as reduced levels of inflammatory markers and TGF-ß/Smad3 fibrotic signalling. Collectively, the data suggest that parental SIRT1 overexpression can ameliorate adverse metabolic programming effects by maternal obesity.


Asunto(s)
Hígado Graso/genética , Inflamación/genética , Obesidad Materna/genética , Sirtuina 1/genética , Animales , Peso Corporal/genética , Dieta Alta en Grasa/efectos adversos , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica/genética , Intolerancia a la Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Obesidad Materna/metabolismo , Obesidad Materna/patología , Embarazo
11.
J Physiol ; 597(2): 467-480, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30381838

RESUMEN

KEY POINTS: Maternal high-fat diet (MHF) consumption led to metabolic and liver disorders in male offspring, which are associated with reduced sirtuin (SIRT)1 expression and activity in the offspring liver SIRT1 overexpression in MHF offspring reduced their body weight and adiposity and normalized lipid metabolic markers in epididymal and retroperitoneal adipose tissues SIRT1 overexpression in MHF offspring improved glucose tolerance, as well as systemic and hepatic insulin sensitivity SIRT1 overexpression ameliorated MHF-induced lipogenesis, oxidative stress and fibrogenesis in the liver of offspring. ABSTRACT: Maternal obesity can increase the risk of metabolic disorders in the offspring. However, the underlying mechanism responsible for this is not clearly understood. Previous evidence implied that sirtuin (SIRT)1, a potent regulator of energy metabolism and stress responses, may play an important role. In the present study, we have shown, in C57BL/6 mice, that maternal high-fat diet (HFD) consumption can induce a pre-diabetic and non-alcoholic fatty liver disease phenotype in the offspring, associated with reduced SIRT1 expression in the hypothalamus, white adipose tissues (WAT) and liver. Importantly, the overexpression of SIRT1 in these offspring significantly attenuated the excessive accumulation of epididymal (Epi) white adipose tissue (WAT) and retroperitoneal (Rp)WAT (P < 0.001), glucose intolerance and insulin resistance (both P < 0.05) at weaning age. These changes were associated with the suppression of peroxisome proliferator-activated receptor gamma (PPAR)γ (P < 0.01), PPARγ-coactivator 1-alpha (P < 0.05) and sterol regulatory element-binding protein-1c in EpiWAT (P < 0.01), whereas there was increased expression of PPARγ in RpWAT (P < 0.05). In the liver, PPARγ mRNA expression, as well as Akt protein expression and activity, were increased (P < 0.05), whereas fatty acid synthase and carbohydrate response element binding protein were downregulated (P < 0.05), supporting increased insulin sensitivity and reduced lipogenesis in the liver. In addition, hepatic expression of endogenous anti-oxidants, including glutathione peroxidase 1 and catalase, was increased (P < 0.01 and P < 0.05 respectively), whereas collagen and fibronectin deposition was suppressed (P < 0.01). Collectively, the present study provides direct evidence of the mechanistic significance of SIRT1 in maternal HFD-induced metabolic dysfunction in offspring and suggests that SIRT1 is a promising target for fetal reprogramming.


Asunto(s)
Dieta Alta en Grasa , Hepatopatías/metabolismo , Enfermedades Metabólicas/metabolismo , Efectos Tardíos de la Exposición Prenatal , Sirtuina 1/metabolismo , Adipocitos/patología , Adiposidad , Animales , Peso Corporal , Ingestión de Alimentos , Femenino , Glucosa/metabolismo , Hipertrofia , Resistencia a la Insulina , Ratones Endogámicos C57BL , Embarazo
12.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L424-L430, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364371

RESUMEN

Air pollution is a ubiquitous problem and comprises gaseous and particulate matter (PM). Epidemiological studies have clearly shown that exposure to PM is associated with impaired lung function and the development of lung diseases, such as chronic obstructive pulmonary disease and asthma. To understand the mechanisms involved, animal models are often used. However, the majority of such models represent high levels of exposure and are not representative of the exposure levels in less polluted countries, such as Australia. Therefore, in this study, we aimed to determine whether low dose PM10 exposure has any detrimental effect on the lungs. Mice were intranasally exposed to saline or traffic-related PM10 (1µg or 5µg/day) for 3 wk. Bronchoalveolar lavage (BAL) and lung tissue were analyzed. PM10 at 1 µg did not significantly affect inflammatory and mitochondrial markers. At 5 µg, PM10 exposure increased lymphocytes and macrophages in BAL fluid. Increased NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and IL-1ß production occurred following PM10 exposure. PM10 (5 µg) exposure reduced mitochondrial antioxidant manganese superoxide (antioxidant defense system) and mitochondrial fusion marker (OPA-1), while it increased fission marker (Drp-1). Autophagy marker light-chain 3 microtubule-associated protein (LC3)-II and phosphorylated-AMPK were reduced, and apoptosis marker (caspase 3) was increased. No significant change of remodeling markers was observed. In conclusion, a subchronic low-level exposure to PM can have an adverse effect on lung health, which should be taken into consideration for the planning of roads and residential buildings.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Pulmón/metabolismo , Material Particulado/efectos adversos , Neumonía/complicaciones , Animales , Líquido del Lavado Bronquioalveolar/citología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Neumonía/metabolismo
13.
FASEB J ; 32(10): 5215-5226, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29688808

RESUMEN

Chronic kidney disease (CKD) is a global epidemic, and its major risk factors include obesity and type 2 diabetes. Obesity not only promotes metabolic dysregulation and the development of diabetic kidney disease but also may independently lead to CKD by a variety of mechanisms, including endocrine and metabolic dysfunction, inflammation, oxidative stress, altered renal hemodynamics, and lipotoxicity. Deleterious renal effects of obesity can also be transmitted from one generation to the next, and it is increasingly recognized that offspring of obese mothers are predisposed to CKD. Epigenetic modifications are changes that regulate gene expression without altering the DNA sequence. Of these, DNA methylation is the most studied. Epigenetic imprints, particularly DNA methylation, are laid down during critical periods of fetal development, and they may provide a mechanism by which maternal-fetal transmission of chronic disease occurs. Our current review explores the evidence for the role of DNA methylation in the development of CKD, diabetic kidney disease, diabetes, and obesity. DNA methylation has been implicated in renal fibrosis-the final pathophysiologic pathway in the development of end-stage kidney disease-which supports the notion that demethylating agents may play a potential therapeutic role in preventing development and progression of CKD.-Larkin, B. P., Glastras, S. J., Chen, H., Pollock, C. A., Saad, S. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Fallo Renal Crónico , Obesidad , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Humanos , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología , Factores de Riesgo
14.
Clin Exp Pharmacol Physiol ; 46(2): 183-193, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30290012

RESUMEN

OBJECTIVES: Epidemiological and animal studies showed that L-carnitine (LC) supplementation can ameliorate oxidative stress-induced tissues damage. We have previously shown that maternal cigarette smoke exposure (SE) can increase renal oxidative stress in newborn offspring with postnatal kidney underdevelopment and renal dysfunction in adulthood, which were normalised by LC administration in the SE dams during pregnancy. Exposure to an adverse intrauterine environment may lead to alteration in the epigenome, a mechanism by which adverse prenatal conditions increase the susceptibility to chronic disease later in life. The current study aimed to determine whether maternal SE induces epigenetic changes in the offspring's kidney are associated with renal underdevelopment, and the protective effect of maternal LC supplementation. METHOD: Female Balb/c mice (7 weeks) were exposed to cigarette smoke (SE) or air (Sham) for 6 weeks prior to mating, during gestation and lactation. A subgroup of the SE dams received LC via drinking water (SE + LC, 1.5 mmol/L) throughout gestation and lactation. Male offspring were studied at postnatal day (P)1, P20, and 13 weeks. RESULTS: Maternal SE altered the expression of renal development markers glial cell line-derived neurotrophic factor and fibroblast growth factor 2, which were associated with increased renal global DNA methylation and DNA methyltransferase 1 mRNA expression at birth. These disorders were reversed by maternal LC administration. CONCLUSION: The effect of maternal SE on renal underdevelopment involves global epigenetic alterations from birth, which can be prevented by maternal LC supplementation.


Asunto(s)
Carnitina/farmacología , Suplementos Dietéticos , Epigénesis Genética/efectos de los fármacos , Riñón/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/prevención & control , Fumar/efectos adversos , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Riñón/patología , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Transducción de Señal/efectos de los fármacos
15.
Am J Physiol Endocrinol Metab ; 315(2): E196-E203, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533740

RESUMEN

Recent studies indicate that sirtuin-1 (SIRT1), an important metabolic sensor and regulator of life span, plays a mechanistic role in maternal obesity-induced programming of metabolic disorders in the offspring. In this study we investigate whether SIRT1 activation in early childhood can mitigate metabolic disorders due to maternal and postnatal high-fat feeding in mice. Male offspring born to chow-fed (MC) or high fat diet-fed dams (MHF) were weaned onto postnatal chow or high-fat diet and treated with SRT1720 (25 mg/kg ip every 2 days) or vehicle control for 6 wk and examined for metabolic disorders. MHF exacerbated offspring body weight and insulin resistance in the offspring exposed to postnatal HFD (OHF). These metabolic changes were associated with reduced hepatic lipid droplet accumulation but increased plasma levels of alanine aminotransferase (ALT), a marker of liver damage. SRT1720 significantly decreased offspring body weight, adiposity, glucose intolerance, and hyperleptinemia due to OHF and reversed hyperinsulinemia and adipocyte hypertrophy due to the additive effects of MHF. Although SRT1720 suppresses liver lipogenesis, inflammation, and oxidative stress markers, it also reduces antioxidants and increased liver collagen deposition in OHF offspring independent of MHF. Hepatic steatosis was attenuated only in MC/OHF offspring in association with elevated plasma ALT levels. The study suggests that postnatal SRT1720 administration can mitigate obesity and insulin resistance in the offspring due to maternal and postnatal HFD exposure. However, the possibility of liver toxicity needs to be further examined.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Dieta Alta en Grasa/efectos adversos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Resistencia a la Insulina , Obesidad/prevención & control , Alanina Transaminasa/sangre , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Dieta , Femenino , Hepatocitos/efectos de los fármacos , Leptina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología
16.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L416-L423, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522560

RESUMEN

Maternal smoking during pregnancy contributes to long-term health problems in offspring, especially respiratory disorders that can manifest in either childhood or adulthood. Receptors for advanced glycation end products (RAGE) are multiligand receptors abundantly localized in the lung, capable of responding to by-products of reactive oxygen species and proinflammatory responses. RAGE signaling is a key regulator of inflammation in cigarette smoking-related pulmonary diseases. However, the impact of maternal cigarette smoke exposure on lung RAGE signaling in the offspring is unclear. This study aims to investigate the effect of maternal cigarette smoke exposure (SE), as well as mitochondria-targeted antioxidant [mitoquinone mesylate (MitoQ)] treatment, during pregnancy on the RAGE-mediated signaling pathway in the lung of male offspring. Female Balb/c mice (8 wk) were divided into a sham group (exposed to air), an SE group (exposed to cigarette smoke), and an SE + MQ group (exposed to cigarette smoke with MitoQ supplement from mating). The lungs from male offspring were collected at 13 wk. RAGE and its downstream signaling, including nuclear factor-κB and mitogen-activated protein kinase family consisting of extracellular signal-regulated kinase 1, ERK2, c-JUN NH2-terminal kinase (JNK), and phosphorylated JNK, in the lung were significantly increased in the SE offspring. Mitochondrial antioxidant manganese superoxide dismutase was reduced, whereas IL-1ß and oxidative stress response nuclear factor (erythroid-derived 2)-like 2 were significantly increased in the SE offspring. Maternal MitoQ treatment normalized RAGE, IL-1ß, and Nrf-2 levels in the SE + MQ offspring. Maternal SE increased RAGE and its signaling elements associated with increased oxidative stress and inflammatory cytokines in offspring lungs, whereas maternal MitoQ treatment can partially normalize these changes.


Asunto(s)
Pulmón/metabolismo , Pulmón/patología , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Fumar/efectos adversos , Animales , Femenino , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Humo/efectos adversos , Nicotiana/efectos adversos
17.
FASEB J ; 30(4): 1383-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26667041

RESUMEN

Obesity is a complex metabolic disease, attributed to diverse and interactive genetic and environmental factors. The associated health consequences of obesity are pleiotropic, with individuals being more susceptible to chronic diseases such as type 2 diabetes mellitus, hypertension, and lipotoxicity-related chronic diseases. The contribution of maternal obesity to the offspring's predisposition to both obesity and its complications is increasingly recognized. Understanding the mechanisms underlying these "transmissible" effects is critical to develop therapeutic interventions to reduce the risk for "programmed" obesity. Sirtuins (SIRTs), particularly SIRT1 and SIRT3, are NAD(+)-dependent deacetylases that regulate metabolic balance and stress responses in both central and peripheral tissues, of which dysregulation is a well-established mediator for the development and effects of obesity. Nevertheless, their implication in the transmissible effects of maternal obesity across generations remains largely elusive. In this review, we examine multiple pathways and systems that are likely to mediate such effects, with particular emphasis on the role of SIRTs.-Nguyen, L. T., Chen, H., Pollock, C. A., Saad, S. Sirtuins-mediators of maternal obesity-induced complications in offspring?


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/fisiopatología , Complicaciones del Embarazo/fisiopatología , Sirtuinas/metabolismo , Animales , Femenino , Humanos , Modelos Biológicos , Obesidad/metabolismo , Embarazo , Complicaciones del Embarazo/metabolismo , Transducción de Señal
18.
Clin Exp Pharmacol Physiol ; 43(1): 56-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26414003

RESUMEN

Hyperglycemia induces all isoforms of transforming growth factor ß (TGFß), which in turn play key roles in inflammation and fibrosis that characterize diabetic nephropathy. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid, derived from sphingosine by the action of sphingosine kinase (SK). S1P mediates many biological processes, which mimic TGFß signaling. To determine the role of SK1 and S1P in inducing fibrosis and inflammation, and the interaction with TGFß-1, 2 and 3 signalling in diabetic nephropathy, human proximal tubular cells (HK2 cells) were exposed to normal (5 mmol/L) or high (30 mmol/L) glucose or TGFß-1, -2, -3 ± an SK inhibitor (SKI-II) or SK1 siRNA. Control and diabetic wild type (WT) and SK1(-/-) mice were studied. Fibrotic and inflammatory markers, and relevant downstream signalling pathways were assessed. SK1 mRNA and protein expression was increased in HK2 cells exposed to high glucose or TGFß1,-2,-3. All TGFß isoforms induced fibronectin, collagen IV and macrophage chemoattractant protein 1 (MCP1), which were reversed by both SKI-II and SK1 siRNA. Exposure to S1P increased phospho-p44/42 expression, AP-1 binding and NFkB phosphorylation. WT diabetic mice exhibited increased renal cortical S1P, fibronectin, collagen IV and MCP1 mRNA and protein expression compared to SK1(-/-) diabetic mice. In summary, this study demonstrates that inhibiting the formation of S1P reduces tubulointerstitial renal inflammation and fibrosis in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Túbulos Renales/lesiones , Túbulos Renales/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Biomarcadores/metabolismo , Línea Celular , Nefropatías Diabéticas/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Glucosa/farmacología , Humanos , Inflamación/enzimología , Inflamación/metabolismo , Inflamación/patología , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Corteza Renal/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ratones , FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
Clin Exp Pharmacol Physiol ; 43(11): 1107-1114, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27557565

RESUMEN

Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide. Mild TBI may lead to neuropsychiatric sequelae, including memory loss and motor impairment. Mitochondrial dysfunction and oxidative stress have a contributory role in several neurological disorders; however, their association with mitophagy in mild TBI is unclear. TBI was induced in female Sprague Dawley (SD) rats using a New York University Impactor (10 g, impactor head 2.5 mm diameter, weight drop 50 mm) and compared to sham surgery controls. The novel object recognition and error ladder tests were performed at 24 hours and for 6 weeks post injury, and the brains were examined histologically to confirm the extent of injury. Mitochondria manganese superoxide dismutase (MnSOD) and the oxidative phosphorylation (OXPHOS) complexes I-V (CI-CV), as well as mitophagy markers, dynamin related protein 1 (DRP-1), LC3A/B and PTEN-induced putative kinase 1 (PINK-1), were measured in the penumbra by western blot. At 24 hours sham rats performed as expected on a novel object recognition test while TBI rats showed cognitive deficits at the early time points. TBI rats also showed more early motor deficits on a horizontal ladder, compared with the sham rats. MnSOD, OXPHOS CI, CIII and CV protein levels were significantly lower in the TBI group at 24 hours. DRP-1, LC3A/B I and II, and PINK-1 were increased at 6 weeks suggesting abnormal mitophagy. Moderate TBI caused immediate cognitive and mild motor functional deficits in the rats that did not persist. Reduced antioxidative capacity and possibly compromised mitochondrial function may affect the long term functional recovery.


Asunto(s)
Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Conmoción Encefálica/complicaciones , Disfunción Cognitiva/etiología , Femenino , Ratas , Ratas Sprague-Dawley
20.
Clin Exp Pharmacol Physiol ; 43(12): 1168-1176, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27561128

RESUMEN

Increased oxidative stress in the brain can lead to increased sympathetic tone that may further induce kidney dysfunction. Previously we have shown that maternal cigarette smoke exposure (SE) leads to significantly increased oxidative stress and inflammation in both brain and kidney, as well as reduced brain and kidney mitochondrial activity. This is closely associated with significant kidney underdevelopment and abnormal function in adulthood in the male offspring. This study aimed to investigate the impact of maternal SE on brain and kidney health in the female offspring. In this study, the mouse dams were exposed to two cigarettes, twice daily for 6 weeks prior to gestation, during pregnancy and lactation. Brains and kidneys from the female offspring were collected at 20 days (P20) and 13 weeks (W13) and were subject to further analysis. We found that mRNA expression of brain inflammatory markers interleukin-1 receptor and Toll-like receptor 4 were significantly increased in the SE offspring at both P20 and W13. Their brain mitochondrial activity markers were however increased at W13 with increased antioxidant activity. Kidney development and function in the female SE offspring were not different from the control offspring. We concluded that although brain inflammatory markers were upregulated in the SE female offspring, they were protected from some of the indicators of brain oxidative stress, such as endogenous antioxidant and mitochondrial dysfunction, as well as abnormal kidney development and function in adulthood.


Asunto(s)
Encéfalo/metabolismo , Riñón/metabolismo , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fumar/efectos adversos , Fumar/metabolismo , Animales , Encéfalo/patología , Femenino , Mediadores de Inflamación/metabolismo , Riñón/patología , Ratones , Estrés Oxidativo/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Factores Sexuales , Fumar/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA