Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Vitam Nutr Res ; 92(2): 134-146, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32811354

RESUMEN

The widespread COVID-19 pandemic has been, currently, converted to a catastrophic human health challenge. Vitamin D (VD) and its metabolites have been used as a palliative treatment for chronic inflammatory and infectious diseases from ancient times. In the current study, some molecular aspects of the potential effects of VD against COVID-19 side-effects have been discussed. An arguable role in autophagy or apoptosis control has been suggested for VD through calcium signaling at the mitochondrial and ER levels. 1,25(OH)2D3 is also an immunomodulator that affects the development of B-cells, T-cells, and NK cells in both innate and acquired immunity. The production of some anti-microbial molecules such as defensins and cathelicidins is also stimulated by VD. The overexpression of glutathione, glutathione peroxidase, and superoxide dismutase, and down-regulation of NADPH oxidase are induced by VD to reduce the oxidative stress. Moreover, the multi-organ failure due to a cytokine storm induced by SARS-CoV2 in COVID-19 may be prevented by the immunomodulatory effects of VD. It can also downregulate the renin-angiotensin system which has a protective role against cardiovascular complications induced by COVID-19. Given the many experimental and molecular evidences due to the potential protective effects of VD on the prevention of the COVID-19-induced morbidities, a VD supplementation is suggested to prevent the lethal side-effects of the infection. It is particularly recommended in VD-deficient patients or those at greater risk of serious or critical effects of COVID-19, including the elderly, and patients with pre-existing chronic diseases, especially those in nursing homes, care facilities, and hospitals.


Asunto(s)
COVID-19 , Anciano , COVID-19/complicaciones , COVID-19/prevención & control , Humanos , Pandemias , ARN Viral , SARS-CoV-2 , Vitamina D/metabolismo
2.
J Mech Behav Biomed Mater ; 151: 106352, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218044

RESUMEN

INTRODUCTION: A bio-implant is a drug-delivery system that is implanted in the human body for a period of more than 30 days. Electromechanical systems are one type of bio-implant that has recently been introduced as a new generation of targeted drug delivery methods. The overarching goal of utilizing these systems is to integrate electrical and mechanical features in order to benefit from the numerous applications of these two systems when used together. The current study aimed to design a prototype of an electromechanical system using Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), and MultiJet Fusion (MJF) techniques for drug delivery that can release a specific drug dosage in the patient's body by connecting to a sensor or under the control of a signal sent by the physician. METHODS: Initially, the implant chambers were created in the form of a hollow cylinder, closed at one end, using three different types of 3D printers: FDM, SLS, and MJF. Each implant was then filled with a model drug (pentoxifylline) and sealed with a thin gold membrane. To achieve the lowest voltage required to melt the gold membrane, an electric circuit with controllable DC voltage generator was designed. Finally, the mechanical resistance, drug release rate, and surface morphology of the designed implants were evaluated. RESULTS: The MJF 3D printer, overally, had higher printing precision and repeatability than other printers; however, the implants printed by the FDM 3D printer were more accurate than other techniques (P value < 0.001), similar to the dimensions of the designed file. The mechanical resistance of the implants was also evaluated, and the polylactic acid implants printed by FDM had the highest value of Young's modulus in both the standard samples and the designed implants. During the 3-month drug leakage study, FDM 3D printed implant had a greater ability to store the desired drug load (P value < 0.001), Furthermore, the SEM micrographs revealed that the polylactic acid implants printed by FDM had minimal porosity in their structure and the layers were well adhered together. The gold membrane with a middle diameter of 2 mm required the lowest voltage of 6 V. As a result, the final electrical circuit was designed with smaller dimensions in order to achieve the voltage required to melt the gold membrane. CONCLUSION: Due to the lack of drug leakage and other mechanical studies, the electromechanical implant produced by the FDM 3D printer was chosen as the optimal electromechanical implant in this study. Along with the designed small circuit, this implant can release a drug dosage in the patient's body at the physician's demand.


Asunto(s)
Sistemas de Liberación de Medicamentos , Prótesis e Implantes , Liberación de Fármacos , Oro , Impresión Tridimensional
3.
Gels ; 8(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36286159

RESUMEN

Dressing wounds accelerates the re-epithelialization process and changes the inflammatory environment towards healing. In the current study, a lignocellulose sponge containing pentoxifylline (PTX)-loaded lecithin/chitosan nanoparticles (LCNs) was developed to enhance the wound healing rate. Lecithin/chitosan nanoparticles were obtained by the solvent-injection method and characterized in terms of morphology, particle size distribution, and zeta potential. The lignocellulose hydrogels were functionalized through oxidation/amination and freeze-dried to obtain sponges. The prepared sponge was then loaded with LCNs/PTX to control drug release. The nanoparticle containing sponges were characterized using FTIR and SEM analysis. The drug release study from both nanoparticles and sponges was performed in PBS at 37 °C at different time points. The results demonstrated that PTX has sustained release from lignocellulose hydrogels. The wound healing was examined using a standard rat model. The results exhibited that PTX loaded hydrogels could achieve significantly accelerated and enhanced healing compared to the drug free hydrogels and the normal saline treatment. Histological examination of the healed skin confirmed the visual observations. Overall speaking, the in vivo assessment of the developed sponge asserts its suitability as wound dressing for treatment of chronic skin wounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA