Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 89(10): 5362-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740995

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE: The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/fisiología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/fisiología , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/fisiología , Antivirales/farmacología , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Oligopéptidos/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/metabolismo
2.
Nat Chem Biol ; 8(11): 920-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23023261

RESUMEN

Here we report a highly conserved new binding site located at the interface between the protease and helicase domains of the hepatitis C virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We propose that compounds binding at this allosteric site inhibit the function of the NS3 protein by stabilizing an inactive conformation and thus represent a new class of direct-acting antiviral agents.


Asunto(s)
Sitio Alostérico , Proteínas no Estructurales Virales/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Antivirales/química , Antivirales/farmacología , Relación Dosis-Respuesta a Droga , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética
3.
J Mol Biol ; 367(3): 882-94, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17275837

RESUMEN

Although the crystal structure of the anti-cancer target protein kinase B (PKBbeta/Akt-2) has been useful in guiding inhibitor design, the closely related kinase PKA has generally been used as a structural mimic due to its facile crystallization with a range of ligands. The use of PKB-inhibitor crystallography would bring important benefits, including a more rigorous understanding of factors dictating PKA/PKB selectivity, and the opportunity to validate the utility of PKA-based surrogates. We present a "back-soaking" method for obtaining PKBbeta-ligand crystal structures, and provide a structural comparison of inhibitor binding to PKB, PKA, and PKA-PKB chimera. One inhibitor presented here exhibits no PKB/PKA selectivity, and the compound adopts a similar binding mode in all three systems. By contrast, the PKB-selective inhibitor A-443654 adopts a conformation in PKB and PKA-PKB that differs from that with PKA. We provide a structural explanation for this difference, and highlight the ability of PKA-PKB to mimic the true PKB binding mode in this case.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/química , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Electricidad Estática
4.
ChemMedChem ; 9(4): 823-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24616449

RESUMEN

Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,ß-methylene adenosine 5'-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein.


Asunto(s)
Inhibidores de Adenilato Ciclasa , Bicarbonatos/farmacología , Inhibidores Enzimáticos/farmacología , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Bicarbonatos/síntesis química , Bicarbonatos/química , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA