Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569848

RESUMEN

Pathogenetic mechanism recognition and proof-of-concept clinical trials were performed in our patients affected by collagen VI-related myopathies. This study, which included 69 patients, aimed to identify innovative clinical data to better design future trials. Among the patients, 33 had Bethlem myopathy (BM), 24 had Ullrich congenital muscular dystrophy (UCMD), 7 had an intermediate phenotype (INTM), and five had myosclerosis myopathy (MM). We obtained data on muscle strength, the degree of contracture, immunofluorescence, and genetics. In our BM group, only one third had a knee extension strength greater than 50% of the predicted value, while only one in ten showed similar retention of elbow flexion. These findings should be considered when recruiting BM patients for future trials. All the MM patients had axial and limb contractures that limited both the flexion and extension ranges of motion, and a limitation in mouth opening. The immunofluorescence analysis of collagen VI in 55 biopsies from 37 patients confirmed the correlation between collagen VI defects and the severity of the clinical phenotype. However, biopsies from the same patient or from patients with the same mutation taken at different times showed a progressive increase in protein expression with age. The new finding of the time-dependent modulation of collagen VI expression should be considered in genetic correction trials.


Asunto(s)
Contractura , Distrofias Musculares , Miopatías Estructurales Congénitas , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distrofias Musculares/metabolismo , Contractura/genética , Contractura/patología , Mutación
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982167

RESUMEN

Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.


Asunto(s)
Contractura , Enfermedades Musculares , Distrofias Musculares , Miopatías Estructurales Congénitas , Humanos , Colágeno Tipo VI/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Contractura/genética , Contractura/patología , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/patología
3.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047652

RESUMEN

Collagen VI-related myopathies are characterized by severe muscle involvement and skin involvement (keratosis pilaris and impaired healing with the development of abnormal scars, especially keloids). Scalp involvement and hair loss have not been reported among cutaneous changes associated with collagen VI mutations. The aim of this study is to describe the clinical, trichoscopic, and histological findings of the scalp changes in patients affected by COL VI mutations and to estimate their prevalence. Patients with Ullrich congenital muscular dystrophy were enrolled and underwent clinical and trichoscopic examinations and a scalp biopsy for histopathology. Five patients were enrolled, and all complained of hair loss and scalp itching. One patient showed yellow interfollicular scales with erythema and dilated, branched vessels, and the histological findings were suggestive of scalp psoriasis. Two patients presented with scarring alopecia patches on the vertex area, and they were histologically diagnosed with folliculitis decalvans. The last two patients presented with scaling and hair thinning, but they were both diagnosed with folliculitis and perifolliculitis. Ten more patients answered to a "scalp involvement questionnaire", and six of them confirmed to have or have had scalp disorders and/or itching. Scalp involvement can be associated with COL VI mutations and should be investigated.


Asunto(s)
Foliculitis , Enfermedades Musculares , Humanos , Cuero Cabelludo/patología , Alopecia/genética , Alopecia/patología , Foliculitis/patología , Colágeno , Prurito , Fenotipo
4.
Pharmacol Res ; 165: 105421, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33429034

RESUMEN

High-throughput screening identified isoxazoles as potent but metabolically unstable inhibitors of the mitochondrial permeability transition pore (PTP). Here we have studied the effects of a metabolically stable triazole analog, TR001, which maintains the PTP inhibitory properties with an in vitro potency in the nanomolar range. We show that TR001 leads to recovery of muscle structure and function of sapje zebrafish, a severe model of Duchenne muscular dystrophy (DMD). PTP inhibition fully restores the otherwise defective respiration in vivo, allowing normal development of sapje individuals in spite of lack of dystrophin. About 80 % sapje zebrafish treated with TR001 are alive and normal at 18 days post fertilization (dpf), a point in time when not a single untreated sapje individual survives. Time to 50 % death of treated zebrafish increases from 5 to 28 dpf, a sizeable number of individuals becoming young adults in spite of the persistent lack of dystrophin expression. TR001 improves respiration of myoblasts and myotubes from DMD patients, suggesting that PTP-dependent dysfunction also occurs in the human disease and that mitochondrial therapy of DMD with PTP-inhibiting triazoles is a viable treatment option.


Asunto(s)
Proteínas de la Membrana/deficiencia , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas Musculares/deficiencia , Triazoles/farmacología , Proteínas de Pez Cebra/deficiencia , Animales , Animales Modificados Genéticamente , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Rodaminas/farmacología , Triazoles/química , Pez Cebra , Proteínas de Pez Cebra/genética
5.
J Cell Sci ; 129(8): 1671-84, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26945058

RESUMEN

Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/fisiología , Colágeno Tipo VI/genética , Contractura/genética , Mitocondrias/fisiología , Distrofias Musculares/congénito , Mutación/genética , Esclerosis/genética , Animales , Autofagia/genética , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Análisis por Micromatrices , Distrofias Musculares/genética , ARN/análisis
6.
Acta Neuropathol ; 136(3): 483-499, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752552

RESUMEN

The synaptic cleft of the neuromuscular junction (NMJ) consists of a highly specialized extracellular matrix (ECM) involved in synapse maturation, in the juxtaposition of pre- to post-synaptic areas, and in ensuring proper synaptic transmission. Key components of synaptic ECM, such as collagen IV, perlecan and biglycan, are binding partners of one of the most abundant ECM protein of skeletal muscle, collagen VI (ColVI), previously never linked to NMJ. Here, we demonstrate that ColVI is itself a component of this specialized ECM and that it is required for the structural and functional integrity of NMJs. In vivo, ColVI deficiency causes fragmentation of acetylcholine receptor (AChR) clusters, with abnormal expression of NMJ-enriched proteins and re-expression of fetal AChRγ subunit, both in Col6a1 null mice and in patients affected by Ullrich congenital muscular dystrophy (UCMD), the most severe form of ColVI-related myopathies. Ex vivo muscle preparations from ColVI null mice revealed altered neuromuscular transmission, with electrophysiological defects and decreased safety factor (i.e., the excess current generated in response to a nerve impulse over that required to reach the action potential threshold). Moreover, in vitro studies in differentiated C2C12 myotubes showed the ability of ColVI to induce AChR clustering and synaptic gene expression. These findings reveal a novel role for ColVI at the NMJ and point to the involvement of NMJ defects in the etiopathology of ColVI-related myopathies.


Asunto(s)
Colágeno Tipo VI/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Esclerosis/metabolismo , Animales , Colágeno Tipo VI/genética , Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Noqueados , Distrofias Musculares/genética , Esclerosis/genética
7.
Pharmacol Res ; 125(Pt B): 122-131, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28899790

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle disease of known etiology without effective, or generally applicable therapy. Mitochondria are affected by the disease in animal models but whether mitochondrial dysfunction is part of the pathogenesis in patients remains unclear. We show that primary cultures obtained from muscle biopsies of DMD patients display a decrease of the respiratory reserve, a consequence of inappropriate opening of the permeability transition pore (PTP). Treatment with the cyclophilin inhibitor alisporivir - a cyclosporin A derivative that desensitizes the PTP but does not inhibit calcineurin - largely restored the maximal respiratory capacity without affecting basal oxygen consumption in cells from patients, thus reinstating a normal respiratory reserve. Treatment with alisporivir, but not with cyclosporin A, led to a substantial recovery of respiratory function matching improved muscle ultrastructure and survival of sapje zebrafish, a severe model of DMD where muscle defects are close to those of DMD patients. Alisporivir was generally well tolerated in HCV patients and could be used for the treatment of DMD.


Asunto(s)
Ciclosporina/farmacología , Mitocondrias/efectos de los fármacos , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/fisiología , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Consumo de Oxígeno/efectos de los fármacos , Pez Cebra
8.
Hum Mol Genet ; 23(20): 5353-63, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24852368

RESUMEN

Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for therapy. Here, we have tested the effect of N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclophilin inhibitor, in a zebrafish model of ColVI myopathy obtained by deletion of the N-terminal region of the ColVI α1 triple helical domain, a common mutation of UCMD. Treatment with antisense morpholino sequences targeting col6a1 exon 9 at the 1-4 cell stage (within 1 h post fertilization, hpf) caused severe ultrastructural and motor abnormalities as assessed by electron and fluorescence microscopy, birefringence, spontaneous coiling events and touch-evoked responses measured at 24-48 hpf. Structural and functional abnormalities were largely prevented when NIM811--which proved significantly more effective than cyclosporin A--was administered at 21 hpf, while FK506 was ineffective. Beneficial effects of NIM811 were also detected (i) in primary muscle-derived cell cultures from UCMD and BM patients, where the typical mitochondrial alterations and depolarizing response to rotenone and oligomycin were significantly reduced; and (ii) in the Col6a1(-/-) myopathic mouse model, where apoptosis was prevented and muscle strength was increased. Since the PTP of zebrafish shares its key regulatory features with the mammalian pore, our results suggest that early treatment with NIM811 should be tested as a potential therapy for UCMD and BM.


Asunto(s)
Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Ciclosporina/administración & dosificación , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/patología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias/metabolismo , Fuerza Muscular/efectos de los fármacos , Distrofias Musculares/congénito , Distrofias Musculares/genética , Pez Cebra
9.
BMC Neurol ; 15: 153, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26306629

RESUMEN

BACKGROUND: Currently, the most promising therapies for Duchenne muscular dystrophy (DMD) are exon skipping and stop codon read-through, two strategies aimed at restoring the expression of dystrophin. A phase 3 clinical trial with drisapersen, a drug designed to induce exon 51-skipping, has failed to show significant improvement of the primary outcome measure, the six-minute walk test. DISCUSSION: Here, we review some key points that should be considered when designing clinical trials for these new therapies. First, younger patients have more functional abilities and more muscle fibers to preserve than older patients and therefore are better subjects for trials designed to demonstrate the success of new treatments. Second, the inclusion of patients on corticosteroids both in the treatment and placebo groups is of concern because the positive effect of corticosteroids might mask the effect of the treatment being tested. Additionally, the reasonable expectation from these therapies is the slowing of disease progression rather than improvement. Therefore, the appropriate clinical endpoints are the prolongation of the ability to stand from the floor, climb stairs, and walk, not an increase in muscle strength or function. Hence, the time frames for the detection of new dystrophin, which occurs within months, and the ability to demonstrate a slowing of disease progression, which requires years, are strikingly different. Finally, placebo-controlled trials are difficult to manage if years of blindness are required to demonstrate a slowing of disease progression. Thus, accelerated/conditional approval for new therapies should be based on surrogate biochemical outcomes: the demonstration of de novo dystrophin production and of its beneficial effect on the functional recovery of muscle fiber. These data suggest that clinical trials for DMD patients must be adapted to the particular characteristics of the disease in order to demonstrate the expected positive effect of new treatments.


Asunto(s)
Corticoesteroides/uso terapéutico , Ensayos Clínicos como Asunto/métodos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Mejoramiento de la Calidad , Proyectos de Investigación , Progresión de la Enfermedad , Quimioterapia Combinada , Distrofina/genética , Exones , Humanos , Masculino , Fuerza Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Resultado del Tratamiento , Caminata
10.
J Cell Physiol ; 229(7): 878-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24356950

RESUMEN

Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the role of collagen VI in human ACL. This study shows that collagen VI is associated both in vivo and in vitro to the cell membrane of knee ACL fibroblasts, contributing to the constitution of a microfibrillar pericellular matrix. In cultured cells the localization of collagen VI at the cell surface correlated with the expression of NG2 proteoglycan, a major collagen VI receptor. The treatment of ACL fibroblasts with anti-NG2 antibody abolished the localization of collagen VI indicating that collagen VI pericellular matrix organization in ACL fibroblasts is mainly mediated by NG2 proteoglycan. In vitro mechanical strain injury dramatically reduced the NG2 proteoglycan protein level, impaired the association of collagen VI to the cell surface, and promoted cell cycle withdrawal. Our data suggest that the injury-induced alteration of specific cell-ECM interactions may lead to a defective fibroblast self-renewal and contribute to the poor regenerative ability of ACL fibroblasts.


Asunto(s)
Ligamento Cruzado Anterior/metabolismo , Membrana Celular/metabolismo , Colágeno Tipo VI/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Ligamento Cruzado Anterior/ultraestructura , Comunicación Celular , Membrana Celular/ultraestructura , Colágeno Tipo VI/ultraestructura , Tejido Conectivo/metabolismo , Tejido Conectivo/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Proteínas de la Matriz Extracelular/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Estrés Mecánico
11.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247853

RESUMEN

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Asunto(s)
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
12.
Cells ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474342

RESUMEN

The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.


Asunto(s)
Colágeno Tipo VI , Mecanotransducción Celular , Distrofias Musculares , Esclerosis , Humanos , Colágeno Tipo VI/genética , Proteínas Hedgehog/metabolismo , Tendones/metabolismo , Fibroblastos/metabolismo
13.
J Cell Physiol ; 228(6): 1323-31, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23169061

RESUMEN

Dystrophin is a subsarcolemmal protein that, by linking the actin cytoskeleton to the extracellular matrix via dystroglycans, is critical for the integrity of muscle fibers. Here, we report that epidermal melanocytes, obtained from conventional skin biopsy, express dystrophin with a restricted localization to the plasma membrane facing the dermal-epidermal junction. In addition the full-length muscle isoform mDp427 was clearly detectable in melanocyte cultures as assessed by immunohistochemistry, RNA, and Western blot analysis. Melanocytes of Duchenne muscular dystrophy (DMD) patients did not express dystrophin, and the ultrastructural analysis revealed typical mitochondrial alterations similar to those occurring in myoblasts from the same patients. Mitochondria of melanocytes from DMD patients readily accumulated tetramethylrhodamine methyl ester, indicating that they are energized irrespective of the presence of dystrophin but, at variance from mitochondria of control donors, depolarized upon the addition of oligomycin, suggesting that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Pure melanocyte cultures can be readily obtained by conventional skin biopsies and may be a feasible and reliable tool alternative to muscle biopsy for functional studies in dystrophinopathies. The mitochondrial dysfunction occurring in DMD melanocytes could represent a promising cellular biomarker for monitoring dystrophinopathies also in response to pharmacological treatments.


Asunto(s)
Distrofina/metabolismo , Melanocitos/metabolismo , Mitocondrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Piel/metabolismo , Biopsia , Northern Blotting , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Distrofina/genética , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Queratinocitos/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/ultraestructura , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Oligomicinas/farmacología , Rodaminas/metabolismo , Piel/efectos de los fármacos , Piel/ultraestructura , Factores de Tiempo , Utrofina/metabolismo
14.
BMC Med Genet ; 14: 59, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23738969

RESUMEN

BACKGROUND: Mutations within the C-terminal region of the COL6A1 gene are only detected in Ullrich/Bethlem patients on extremely rare occasions. CASE PRESENTATION: Herein we report two Brazilian brothers with a classic Ullrich phenotype and compound heterozygous for two truncating mutations in COL6A1 gene, expected to result in the loss of the α1(VI) chain C2 subdomain. Despite the reduction in COL6A1 RNA level due to nonsense RNA decay, three truncated alpha1 (VI) chains were produced as protein variants encoded by different out-of-frame transcripts. Collagen VI matrix was severely decreased and intracellular protein retention evident. CONCLUSION: The altered deposition of the fibronectin network highlighted abnormal interactions of the mutated collagen VI, lacking the α1(VI) C2 domain, within the extracellular matrix, focusing further studies on the possible role played by collagen VI in fibronectin deposition and organization.


Asunto(s)
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Mutación , Esclerosis/genética , Células Cultivadas , Colágeno Tipo VI/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Heterocigoto , Humanos , Masculino , Microscopía Confocal , Distrofias Musculares/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Estabilidad del ARN , Enfermedades Raras , Esclerosis/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 32(9): 2178-84, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22814752

RESUMEN

OBJECTIVE: Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-ß processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. METHODS AND RESULTS: This study uses a phenotype rescue approach in which Emilin-1 is expressed in either endothelial cells or vascular smooth muscle cells of transgenic animals with the Emilin1(-/-) background. We found that normalization of BP required Emilin-1 expression in smooth muscle cells, whereas expression of the protein in endothelial cells did not modify the hypertensive phenotype of Emilin1(-/-) mice. We also explored the effect of treatment with anti-TGF-ß antibodies on the hypertensive phenotype of Emilin1(-/-) mice, finding that neutralization of TGF-ß in Emilin1 null mice normalized BP quite rapidly (2 weeks). Finally, we evaluated the vasoconstriction response of resistance arteries to perfusion pressure and neurohumoral agents in different transgenic mouse lines. Interestingly, we found that the hypertensive phenotype was coupled with an increased arteriolar myogenic response to perfusion pressure, while the vasoconstriction induced by neurohumoral agents remained unaffected. We further elucidate that, as for the hypertensive phenotype, the increased myogenic response was attributable to increased TGF-ß activity. CONCLUSIONS: Our findings clarify that Emilin-1 produced by vascular smooth muscle cells acts as a main regulator of resting BP levels by controlling the myogenic response in resistance arteries through TGF-ß.


Asunto(s)
Presión Sanguínea , Hipertensión/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstricción , Animales , Anticuerpos Neutralizantes/administración & dosificación , Arteriolas/metabolismo , Arteriolas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Monitoreo Ambulatorio de la Presión Arterial/métodos , Relación Dosis-Respuesta a Droga , Ecocardiografía Doppler , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Genotipo , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenotipo , Telemetría , Factores de Tiempo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética , Vasoconstrictores/farmacología
16.
Nat Genet ; 35(4): 367-71, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14625552

RESUMEN

Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy. We previously generated collagen VI-deficient (Col6a1-/-) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1-/- muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1-/- mice on incubation with the selective F1F(O)-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1-/- myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1-/- mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.


Asunto(s)
Apoptosis , Colágeno Tipo VI/deficiencia , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/patología , Enfermedades Musculares/patología , Animales , Calcio/metabolismo , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Fibroblastos/metabolismo , Homocigoto , Inmunosupresores/farmacología , Etiquetado Corte-Fin in Situ , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Oligomicinas/farmacología , Retículo Sarcoplasmático/ultraestructura
17.
Autophagy ; 19(12): 3221-3229, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37528588

RESUMEN

COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of COL6 genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both col6a1 null (col6a1-/-) mice and COL6-RM patients. We previously demonstrated that one-month per os administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in col6a1-/- mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in col6a1-/- mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.Abbreviations: AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.


Asunto(s)
Enfermedades Musculares , Espermidina , Humanos , Ratones , Animales , Espermidina/farmacología , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Estudios Prospectivos , Autofagia/fisiología , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo
18.
Acta Neuropathol Commun ; 11(1): 48, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945066

RESUMEN

Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Fenotipo
19.
J Biol Chem ; 286(48): 41163-41170, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21984833

RESUMEN

We have studied the pathways for Ca(2+) transport in mitochondria of the fruit fly Drosophila melanogaster. We demonstrate the presence of ruthenium red (RR)-sensitive Ca(2+) uptake, of RR-insensitive Ca(2+) release, and of Na(+)-stimulated Ca(2+) release in energized mitochondria, which match well characterized Ca(2+) transport pathways of mammalian mitochondria. Following larger matrix Ca(2+) loading Drosophila mitochondria underwent spontaneous RR-insensitive Ca(2+) release, an event that in mammals is due to opening of the permeability transition pore (PTP). Like the PTP of mammals, Drosophila Ca(2+)-induced Ca(2+) release could be triggered by uncoupler, diamide, and N-ethylmaleimide, indicating the existence of regulatory voltage- and redox-sensitive sites and was inhibited by tetracaine. Unlike PTP-mediated Ca(2+) release in mammals, however, it was (i) insensitive to cyclosporin A, ubiquinone 0, and ADP; (ii) inhibited by P(i), as is the PTP of yeast mitochondria; and (iii) not accompanied by matrix swelling and cytochrome c release even in KCl-based medium. We conclude that Drosophila mitochondria possess a selective Ca(2+) release channel with features intermediate between the PTP of yeast and mammals.


Asunto(s)
Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Animales , Antifúngicos/farmacología , Benzoquinonas/farmacología , Ciclosporina/farmacología , Drosophila melanogaster , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Indicadores y Reactivos/farmacología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Mamíferos/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Rojo de Rutenio/farmacología , Especificidad de la Especie , Levaduras/metabolismo
20.
BMC Med Genet ; 13: 73, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22894145

RESUMEN

BACKGROUND: Although Duchenne and Becker muscular dystrophies, X-linked recessive myopathies, predominantly affect males, a clinically significant proportion of females manifesting symptoms have also been reported. They represent an heterogeneous group characterized by variable degrees of muscle weakness and/or cardiac involvement. Though preferential inactivation of the normal X chromosome has long been considered the principal mechanism behind disease manifestation in these females, supporting evidence is controversial. METHODS: Eighteen females showing a mosaic pattern of dystrophin expression on muscle biopsy were recruited and classified as symptomatic (7) or asymptomatic (11), based on the presence or absence of muscle weakness. The causative DMD gene mutations were identified in all cases, and the X-inactivation pattern was assessed in muscle DNA. Transcriptional analysis in muscles was performed in all females, and relative quantification of wild-type and mutated transcripts was also performed in 9 carriers. Dystrophin protein was quantified by immunoblotting in 2 females. RESULTS: The study highlighted a lack of relationship between dystrophic phenotype and X-inactivation pattern in females; skewed X-inactivation was found in 2 out of 6 symptomatic carriers and in 5 out of 11 asymptomatic carriers. All females were characterized by biallelic transcription, but no association was found between X-inactivation pattern and allele transcriptional balancing. Either a prevalence of wild-type transcript or equal proportions of wild-type and mutated RNAs was observed in both symptomatic and asymptomatic females. Moreover, very similar levels of total and wild-type transcripts were identified in the two groups of carriers. CONCLUSIONS: This is the first study deeply exploring the DMD transcriptional behaviour in a cohort of female carriers. Notably, no relationship between X-inactivation pattern and transcriptional behaviour of DMD gene was observed, suggesting that the two mechanisms are regulated independently. Moreover, neither the total DMD transcript level, nor the relative proportion of the wild-type transcript do correlate with the symptomatic phenotype.


Asunto(s)
Compensación de Dosificación (Genética) , Distrofina/genética , Debilidad Muscular/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación/genética , Transcripción Genética , Inactivación del Cromosoma X/genética , Adolescente , Adulto , Alelos , Western Blotting , Niño , Preescolar , Hibridación Genómica Comparativa , Distrofina/metabolismo , Femenino , Heterocigoto , Humanos , Persona de Mediana Edad , Debilidad Muscular/patología , Osteopontina/genética , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA