Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 286(16): 14007-18, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21335552

RESUMEN

Glutamate is the major excitatory neurotransmitter of the central nervous system (CNS) and may induce cytotoxicity through persistent activation of glutamate receptors and oxidative stress. Its extracellular concentration is maintained at physiological concentrations by high affinity glutamate transporters of the solute carrier 1 family (SLC1). Glutamate is also present in islet of Langerhans where it is secreted by the α-cells and acts as a signaling molecule to modulate hormone secretion. Whether glutamate plays a role in islet cell viability is presently unknown. We demonstrate that chronic exposure to glutamate exerts a cytotoxic effect in clonal ß-cell lines and human islet ß-cells but not in α-cells. In human islets, glutamate-induced ß-cell cytotoxicity was associated with increased oxidative stress and led to apoptosis and autophagy. We also provide evidence that the key regulator of extracellular islet glutamate concentration is the glial glutamate transporter 1 (GLT1). GLT1 localizes to the plasma membrane of ß-cells, modulates hormone secretion, and prevents glutamate-induced cytotoxicity as shown by the fact that its down-regulation induced ß-cell death, whereas GLT1 up-regulation promoted ß-cell survival. In conclusion, the present study identifies GLT1 as a new player in glutamate homeostasis and signaling in the islet of Langerhans and demonstrates that ß-cells critically depend on its activity to control extracellular glutamate levels and cellular integrity.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/biosíntesis , Regulación de la Expresión Génica , Proteínas de Transporte de Glutamato en la Membrana Plasmática/biosíntesis , Células Secretoras de Insulina/citología , Animales , Apoptosis , Autofagia , Supervivencia Celular , Transportador 2 de Aminoácidos Excitadores/fisiología , Proteínas de Transporte de Glutamato en la Membrana Plasmática/fisiología , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Homeostasis , Humanos , Islotes Pancreáticos/citología , Ratones , Modelos Biológicos , Estrés Oxidativo
2.
Insect Mol Biol ; 11(4): 283-9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12144692

RESUMEN

Phenylglyoxal (PGO), an arginine-modifying reagent, is an irreversible inhibitor of KAAT1-mediated leucine transport, expressed in Xenopus oocytes. The PGO effect was dose-dependent and 5 mm PGO determined a V(max) reduction to 24% of the control, consistent with the covalent binding to transporter arginine residues not located in the leucine binding site. The use of labelled [(14)C]PGO confirmed that the inhibitor binds KAAT1. The protein membrane domain contains seven arginine residues one of which, arginine 76, is conserved in the family of GABA transporters. Using site-directed mutagenesis we showed that only arginine 76 is crucial for KAAT1 activity and is involved in PGO binding.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Arginina/fisiología , Transporte Biológico/fisiología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas de Insectos , Lepidópteros/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Fenilglioxal/farmacología , Animales , Arginina/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica/fisiología , Cinética , Lepidópteros/genética , Leucina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Xenopus laevis/genética , Xenopus laevis/metabolismo
3.
Am J Physiol Cell Physiol ; 285(3): C623-32, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12736138

RESUMEN

KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl--dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20-30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Aminoácidos/farmacocinética , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Insectos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Inhibidores Enzimáticos , Etilmaleimida/farmacología , Femenino , Ácido Glutámico/genética , Cinética , Manduca , Glicoproteínas de Membrana/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/fisiología , Fenilglioxal/farmacología , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Reactivos de Sulfhidrilo/farmacología , Xenopus laevis
4.
Am J Physiol Cell Physiol ; 287(3): C754-61, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15140745

RESUMEN

The ability of the two highly homologous Na(+)/Cl(-)-dependent neutral amino acid transporters KAAT1 and CAATCH1, cloned from the midgut epithelium of the larva Manduca sexta, to transport different amino acids depends on the cotransported ion, on pH, and on the membrane voltage. Different organic substrates give rise to transport-associated currents with their own characteristics, which are notably distinct between the two proteins. Differences in amplitude, kinetics, and voltage dependence of the transport-associated currents have been observed, as well as different substrate selectivity patterns measured by radioactive amino acid uptake assays. These diversities represent useful tools to investigate the structural determinants involved in the substrate selectivity. To identify these regions, we built four chimeric proteins between the two transporters. These proteins, heterologously expressed in Xenopus laevis oocytes, were analyzed by two-electrode voltage clamp and uptake measurements. Initially, we exchanged the first three domains, obtaining the chimeras C3K9 and K3C9 (where numbers indicate the transmembrane domains and letters represent the original proteins), which showed electrophysiological and [(3)H]amino acid uptake characteristics resembling those of KAAT1 and CAATCH1, respectively. Subsequent substitution of the last four domains in C3K9 and K3C9 gave the proteins C3K5C4 and K3C5K4, which showed the same behavior as KAAT1 and CAATCH1 in electrophysiological and transport determinations. These results suggest that in KAAT1 and CAATCH1, only the central transmembrane domains (from 4 to 8) of the protein are responsible for substrate selectivity.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de la Membrana/fisiología , Secuencia de Aminoácidos , Animales , Quimera , Clonación Molecular , Electrofisiología , Manduca , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Filogenia , Relación Estructura-Actividad , Especificidad por Sustrato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA