Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Mol Recognit ; 22(5): 380-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19585542

RESUMEN

Brain machine interface (BMI) devices offer a platform that can be used to assist people with extreme disabilities, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease. Silicon (Si) has been the material of choice used for the manufacture of BMI devices due to its mechanical strength, its electrical properties and multiple fabrication techniques; however, chronically implanted BMI devices have usually failed within months of implantation due to biocompatibility issues and the fact that Si does not withstand the harsh environment of the body. Single crystal cubic silicon carbide (3C-SiC) and nanocrystalline diamond (NCD) are semiconductor materials that have previously shown good biocompatibility with skin and bone cells. Like Si, these materials have excellent physical characteristics, good electrical properties, but unlike Si, they are chemically inert. We have performed a study to evaluate the general biocompatibility levels of all of these materials through the use of in vitro techniques. H4 human neuroglioma and PC12 rat pheochromocytoma cell lines were used for the study, and polystyrene (PSt) and amorphous glass were used as controls or for morphological comparison. MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assays were performed to determine general cell viability with each substrate and atomic force microscopy (AFM) was used to quantify the general cell morphology on the substrate surface along with the substrate permissiveness to lamellipodia extension. 3C-SiC was the only substrate tested to have good viability and superior lamellipodia permissiveness with both cell lines, while NCD showed a good level of viability with the neural H4 line but a poor viability with the PC12 line and lower permissiveness than 3C-SiC. Explanations pertaining to the performance of each substrate with both cell lines are presented and discussed along with future work that must be performed to further evaluate specific cell reactions on these substrates.


Asunto(s)
Compuestos Inorgánicos de Carbono/farmacología , Supervivencia Celular/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Diamante/farmacología , Neuronas/efectos de los fármacos , Compuestos de Silicona/farmacología , Animales , Compuestos Inorgánicos de Carbono/efectos adversos , Línea Celular Tumoral , Diamante/efectos adversos , Humanos , Microscopía de Fuerza Atómica , Neuronas/patología , Células PC12 , Ratas , Compuestos de Silicona/efectos adversos
2.
Mater Sci Eng C Mater Biol Appl ; 73: 465-471, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183633

RESUMEN

GOAL: Nanowires are promising biomaterials in multiple clinical applications. The goal of this study was to investigate the cytotoxicity of carbon-doped silica nanowires (SiOxCy NWs) on a fibroblastic cell line in vitro. MATERIALS AND METHODS: SiOxCy NWs were grown on Si substrates by CVD process. Murine L929 fibroblasts were cultured in complete DMEM and indirect and direct cytotoxicity tests were performed in agreement with ISO 19003-5, by quantitating cell viability at MTT and chemiluminescent assay. Cell cultures were investigated at Scanning Electron Microscope (SEM) and immunocytochemistry to observe their morphology and investigate cell-NWs interactions. Furthermore, hemocompatibility with Platelet-rich Plasma was assayed at SEM and by ELISA assay. RESULTS: SiOxCy NWs proved biocompatible and did not impair cell proliferation at contact assays. L929 were able to attach on NWs and proliferate. Most interestingly, L929 reorganised the NW scaffold by displacing the nanostructure and creating tunnels within the NW network. NWs moreover did not impair platelet activation and behaved similarly to flat SiO2. CONCLUSIONS: Our data show that SiOxCy NWs did not release cytotoxic species and acted as a viable and adaptable scaffold for fibroblastic cells, thus representing a promising platform for implantable devices.


Asunto(s)
Tecnología Biomédica/métodos , Nanocables/toxicidad , Silicatos/toxicidad , Andamios del Tejido/química , Animales , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Inmunohistoquímica , Mediciones Luminiscentes , Masculino , Ratones , Nanocables/ultraestructura , Selectina-P/metabolismo , Activación Plaquetaria/efectos de los fármacos , Sus scrofa
3.
Artículo en Inglés | MEDLINE | ID: mdl-26737437

RESUMEN

In the field of Brain Machine Interfaces (BMI) researchers still are not able to produce clinically viable solutions that meet the requirements of long-term operation without the use of wires or batteries. Another problem is neural compatibility with the electrode probes. One of the possible ways of approaching these problems is the use of semiconductor biocompatible materials (silicon carbide) combined with an integrated circuit designed to operate with low power consumption. This paper describes a low-power neural signal amplifier chip, named Cortex, fabricated using 0.18 µm CMOS process technology with all electronics integrated in an area of 0.40 mm(2). The chip has 4 channels, total power consumption of only 144 µW, and is impedance matched to silicon carbide biocompatible electrodes.


Asunto(s)
Amplificadores Electrónicos , Interfaces Cerebro-Computador , Electrodos , Telemetría/instrumentación , Materiales Biocompatibles , Compuestos Inorgánicos de Carbono , Suministros de Energía Eléctrica , Electrónica , Humanos , Compuestos de Silicona
4.
Artículo en Inglés | MEDLINE | ID: mdl-23366222

RESUMEN

Silicon Carbide (SiC), has been shown to be a bio- and hema-compatible substrate that could potentially be used in biosensor applications. The development of a viable biorecognition interface using SiC as the substrate material for bio-detection is described. Surface modification with 3-aminopropyltriethoxysilane (APTES) and immobilization via covalent conjugation of antimyoglobin (anti-Myo) on the modified surfaces is achieved, which are initial steps for immunosensing based devices. Successful formation of APTES layers and antibody immobilization were identified with surface water contact angle (SWCA), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).


Asunto(s)
Compuestos Inorgánicos de Carbono/metabolismo , Carbono/metabolismo , Proteínas Inmovilizadas/metabolismo , Infarto del Miocardio/diagnóstico , Mioglobina/metabolismo , Compuestos de Silicona/metabolismo , Hidroxilación , Microscopía de Fuerza Atómica , Propilaminas , Silanos/química , Propiedades de Superficie
5.
Artículo en Inglés | MEDLINE | ID: mdl-18003344

RESUMEN

Crystalline silicon carbide (SiC) and silicon (Si) biocompatibility was evaluated by directly culturing three mammalian cell lines on these semiconducting substrates. Cell proliferation and adhesion quality were studied using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and fluorescent microscopy. The reported results show that SiC is indeed a more biocompatible substrate than Si. The surface wettability of SiC and Si samples was evaluated through static contact angle measurements, which provided interesting information regarding the influence of different cleaning procedures on the SiC surfaces. The cell proliferation data are discussed in light of the contact angle measurements results. This joint analysis leads to interesting conclusions that may help to uncover the main factors that define a semiconductor's biocompatibility.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Compuestos Inorgánicos de Carbono/química , Supervivencia Celular/efectos de los fármacos , Compuestos de Silicona/química , Silicio/química , Animales , Línea Celular , Cristalización/métodos , Humanos , Ensayo de Materiales , Ratones , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA