Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 28(6): 1417-1421, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32243836

RESUMEN

Oncolytic viruses (OVs) represent a promising new class of cancer therapeutics and cause antitumor effects by two major mechanisms: (1) directly killing cancer cells in a process known as oncolysis, or (2) initiating a powerful antitumor immune response. Interestingly, energy metabolism, within either cancer cells or immune cells, plays a pivotal role in defining the outcome of OV-mediated antitumor effects. Following therapeutic administration, OVs must hijack host cell metabolic pathways to acquire building blocks such as nucleotides, lipids, and amino acids for the process of replication that is necessary for oncolysis. Additionally, OV-stimulated antitumor immune responses are highly dependent on the metabolic state within the tumor microenvironment. Thus, metabolic reprogramming strategies bear the potential to enhance the efficacy of both OV-mediated oncolysis and antitumor immune responses.


Asunto(s)
Reprogramación Celular/genética , Metabolismo Energético/genética , Terapia Genética , Vectores Genéticos/genética , Viroterapia Oncolítica , Virus Oncolíticos/genética , Animales , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Inmunomodulación , Redes y Vías Metabólicas/genética , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/terapia , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Fosforilación Oxidativa , Resultado del Tratamiento
2.
Mol Ther Oncolytics ; 24: 695-706, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35284625

RESUMEN

Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.

3.
Trends Cancer ; 6(1): 9-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952784

RESUMEN

Antibodies targeting CD38, a NAD+-degrading enzyme, have emerged as a promising immunotherapy against multiple myeloma (MM). Currently, the mechanisms by which anti-CD38 antibodies establish their therapeutic effects are poorly understood. Here, we advocate for the depletion of NAD+ to enhance the efficacy of anti-CD38-based immunotherapies in MM.


Asunto(s)
ADP-Ribosil Ciclasa 1/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Citocinas/antagonistas & inhibidores , Glicoproteínas de Membrana/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , NAD/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , ADP-Ribosil Ciclasa 1/metabolismo , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Adenosina/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Sinergismo Farmacológico , Humanos , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Escape del Tumor/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA