Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Basic Microbiol ; 62(12): 1440-1445, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084216

RESUMEN

This study aimed to conduct a detailed study on murine model testing of bacteriophage against Acinetobacter baumannii. These bacteriophages were tested not only for their efficacy in healing wound of murine models infected with multidrug resistant A. baumannii but were also studied for any derangement in hematological parameters as well as liver and kidney function. The study also included any histological changes observed in hepatic and renal tissues of the bacteriophage treated murine animals. This experimental study was conducted at Institute of Basic Medical Sciences, Khyber Medical University, Peshawar and Institute of Pure and Applied Biology, Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan. A. baumannii isolates were obtained from the Microbiology Department, Armed Forces Institute of Pathology, Rawalpindi. Antimicrobial susceptibility was done by using standard procedures and as per Clinical Laboratory Standards Institute guidelines. Bacteriophages were isolated from sewage water samples collected from different hospitals in Multan. These bacteriophages were characterized and finally used for treating the murine model and efficacy of phage as a therapeutic option was determined by using superficial rat wound model. In this study, the isolated lytic bacteriophage was effective in relatively faster wound healing of the infected animals. Moreover, there were no significant hematological or renal and hepatic profile changes in treated animals. Histology of renal and hepatic tissues was also normal as compared to control animals. Our study concluded that the isolated phage could serve as an attractive therapeutic candidate to combat the deadly multidrug resistant A. baumannii.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Ratones , Ratas , Animales , Infecciones por Acinetobacter/terapia , Infecciones por Acinetobacter/microbiología , Modelos Animales de Enfermedad , Aguas del Alcantarillado , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple
2.
Dose Response ; 20(2): 15593258221108280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734395

RESUMEN

Vicilins are major seed storage proteins and show differential binding affinities toward sugar moieties of fungal cell wall and insect gut epithelium. Hence, purpose of study is the thorough in-silico characterization of interactions between vicilin and chitin oligomer followed by fungal and insecticidal bioassays. This work covers the molecular simulation studies explaining the interactions between Pisum sativum vicilin (PsV) and chitin oligomer followed by protein bioassay against different pathogens. LC-MS/MS of purified PsV (∼50 kDa) generated residual data along high pea vicilin homology (UniProtKB ID; P13918). Predicted model (PsV) indicated the characteristic homotrimer joined through head-to-tail association and each monomer is containing a bicupin domain. PsV site map analysis showed a new site (Site 4) into which molecular docking confirmed the strong binding of chitin oligomer (GlcNAc)4. Molecular dynamics simulation data (50 ns) indicated that chitin-binding site was comprised of 8 residues (DKEDRNEN). However, aspartate and glutamate significantly contributed in the stability of ligand binding. Computational findings were further verified via significant growth inhibition of Aspergillus flavus, A. niger, and Fusarium oxysporum against PsV. Additionally, the substantial adult population of Brevicoryne brassicae was reduced and different life stages of Tribolium castaneum also showed significant mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA