RESUMEN
BACKGROUND: Freezing of gait is one of the most disturbing motor symptoms of Parkinson's disease (PD). However, the effective connectivity between key brain hubs that are associated with the pathophysiological mechanism of freezing of gait remains elusive. OBJECTIVE: The aim of this study was to identify effective connectivity underlying freezing of gait. METHODS: This study applied spectral dynamic causal modeling (DCM) of resting-state functional magnetic resonance imaging in dedicated regions of interest determined using a data-driven approach. RESULTS: Abnormally increased functional connectivity between the bilateral dorsolateral prefrontal cortex (DLPFC) and the bilateral mesencephalic locomotor region (MLR) was identified in freezers compared with nonfreezers. Subsequently, spectral DCM analysis revealed that increased top-down excitatory effective connectivity from the left DLPFC to bilateral MLR and an independent self-inhibitory connectivity within the left DLPFC in freezers versus nonfreezers (>99% posterior probability) were inversely associated with the severity of freezing of gait. The lateralization of these effective connectivity patterns was not attributable to the initial dopaminergic deficit nor to structural changes in these regions. CONCLUSIONS: We have identified novel effective connectivity and an independent self-inhibitory connectivity underlying freezing of gait. Our findings imply that modulating the effective connectivity between the left DLPFC and MLR through neurostimulation or other interventions could be a target for reducing freezing of gait in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
RESUMEN
OBJECTIVE: This study aimed to develop a Japanese version of the New Freezing of Gait Questionnaire (NFOG-Q) and investigate its validity and reliability. METHODS: After translating the NFOG-Q according to a standardised protocol, 56 patients with Parkinson's disease (PD) were administered it. Additionally, the MDS-UPDRS parts II and III, Hoehn and Yahr (H&Y) stage, and number of falls over 1 month were evaluated. Spearman's correlation coefficients (rho) were used to determine construct validity, and Cronbach's alpha (α) was used to examine reliability. RESULTS: The interquartile range of the NFOG-Q scores was 10.0-25.3 (range 0-29). The NFOG-Q scores were strongly correlated with the MDS-UPDRS part II, items 2.12 (walking and balance), 2.13 (freezing), 3.11 (freezing of gait), and 3.12 (postural stability) and the postural instability and gait difficulty score (rho = 0.515-0.669), but only moderately related to the MDS-UPDRS item 3.10 (gait), number of falls, disease duration, H&Y stage, and time of the Timed Up-and-Go test (rho = 0.319-0.434). No significant correlations were observed between age and the time of the 10-m walk test. The internal consistency was excellent (α = 0.96). CONCLUSIONS: The Japanese version of the NFOG-Q is a valid and reliable tool for assessing the severity of freezing in patients with PD.
Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Masculino , Femenino , Anciano , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/fisiopatología , Reproducibilidad de los Resultados , Encuestas y Cuestionarios/normas , Japón , Persona de Mediana Edad , Traducción , Índice de Severidad de la Enfermedad , Anciano de 80 o más Años , Pueblos del Este de AsiaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease; transactivation response DNA-binding protein of 43 kDa (TDP-43) and iron accumulation are supposed to play a crucial role in the pathomechanism of the disease. Here, we report an unusual case of a patient with ALS who presented with speech apraxia as an initial symptom and upper motor neuron deficiencies. In the early clinical stages, single-photon emission computed tomography visualized focal hypoperfusion of the right frontal operculum, and magnetic resonance imaging identified a hypointense area along the frontal lobe on T2-weighted images. Neuropathological examination revealed that neuronophagia of Betz cells, gliosis, appearance of phosphorylated TDP-43 (p-TDP-43)-positive glial and neuronal inclusions, and prominent iron accumulation were frequently visible in the precentral gyrus. TDP-43 pathology and focal iron accumulation were also visible in the frontal operculum, but only a mild neuronal loss and a few p-TDP-43-positive neuronal and glial inclusions were found in the hypoglossal nucleus of the medulla oblongata and anterior horn of the spinal cord. Immunoblot analysis revealed an atypical band pattern for ALS. In our case, abnormal TDP-43 and iron accumulation might possibly have caused neurodegeneration of the frontal operculum, in tandem or independently; it might then have spread into the primary motor area. Our results suggest a causative association between TDP-43 and iron accumulation in the pathomechanisms of ALS presenting with upper motor neuron signs.
Asunto(s)
Esclerosis Amiotrófica Lateral , Apraxias , Corteza Motora , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/complicaciones , Apraxias/diagnóstico por imagen , Humanos , Hierro , Neuronas Motoras , HablaRESUMEN
Background: Recently, the common marmoset (Callithrix jacchus) has attracted significant interest as a non-human primate stroke model. Functional impairment in non-human primate stroke models should be evaluated quantitatively and successively after stroke, but conventional observational assessments of behavior cannot fully fit this purpose. In this paper, we report a behavioral analysis using MarmoDetector, a three-dimensional motion analysis, in an ischemic stroke model using photosensitive dye, along with an observational behavioral assessment and imaging examination. Methods: Ischemic stroke was induced in the left hemisphere of three marmosets. Cerebral infarction was induced by intravenous injection of rose bengal and irradiation with green light. The following day, the success of the procedure was confirmed by magnetic resonance imaging (MRI). The distance traveled, speed, activity time, and jumps/climbs were observed for 28 days after stroke using MarmoDetector. We also assessed the marmosets' specific movements and postural abnormalities using conventional neurological scores. Results: Magnetic resonance imaging diffusion-weighted and T2-weighted images showed hyperintense signals, indicating cerebral infarction in all three marmosets. MarmoDetector data showed that the both indices immediately after stroke onset and gradually improved over weeks. Neurological scores were the worst immediately after stroke and did not recover to pre-infarction levels during the observation period (28 days). A significant correlation was observed between MarmoDetector data and conventional neurological scores. Conclusion: In this study, we showed that MarmoDetector can quantitatively evaluate behavioral changes in the acute to subacute phases stroke models. This technique can be practical for research on the pathophysiology of ischemic stroke and for the development of new therapeutic methods.
RESUMEN
We herein report a 56-year-old Japanese woman who had been diagnosed with hereditary angioedema. She experienced progressing muscle weakness and pain in the upper and lower extremities. Blood tests revealed a marked increase in creatine kinase levels; however, myositis-specific autoantibodies were not detected. Serum C1-inhibitor activity and C4 levels were low. A muscle biopsy showed mild muscle fiber necrosis and C5b-9 deposition in the endomysial capillary vessel walls and sarcolemma, mimicking necrotizing myopathy. These results suggest that C1-inhibitor deficiency induces myositis-like symptoms through the activation of the complement pathway and deposition of the membrane attack complex in the muscles.