Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Dev Biol ; 499: 10-21, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060937

RESUMEN

Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.


Asunto(s)
Corazón , Miocardio , Diferenciación Celular/fisiología , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Mesodermo/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos , Animales , Ratones
2.
Development ; 145(7)2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29490984

RESUMEN

In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis.


Asunto(s)
Corazón/embriología , Organogénesis/fisiología , Tracto Gastrointestinal Superior/embriología , Actomiosina/fisiología , Animales , Embrión de Pollo , Endodermo/citología , Técnica del Anticuerpo Fluorescente , Mesodermo/citología , Imagen de Lapso de Tiempo
3.
Development ; 144(10): 1906-1917, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28432216

RESUMEN

The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/- embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/- embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/- gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/- embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia.


Asunto(s)
Atresia Biliar , Colecistitis/embriología , Vesícula Biliar/embriología , Proteínas HMGB/genética , Contracción Muscular/genética , Músculo Liso/embriología , Factores de Transcripción SOXF/genética , Animales , Atresia Biliar/embriología , Atresia Biliar/genética , Atresia Biliar/patología , Células Cultivadas , Colecistitis/genética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Vesícula Biliar/metabolismo , Vesícula Biliar/fisiología , Haploinsuficiencia , Proteínas Hedgehog/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso/fisiología , Embarazo
4.
Biol Reprod ; 99(3): 578-589, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635272

RESUMEN

In mouse conceptus, two yolk-sac membranes, the parietal endoderm (PE) and visceral endoderm (VE), are involved in protecting and nourishing early-somite-stage embryos prior to the establishment of placental circulation. Both PE and VE membranes are tightly anchored to the marginal edge of the developing placental disk, in which the extraembryonic endoderm (marginal zone endoderm: ME) shows the typical flat epithelial morphology intermediate between those of PE and VE in vivo. However, the molecular characteristics and functions of the ME in mouse placentation remain unclear. Here, we show that SOX17, not SOX7, is continuously expressed in the ME cells, whereas both SOX17 and SOX7 are coexpressed in PE cells, by at least 10.5 days postconception. The Sox17-null conceptus, but not the Sox7-null one, showed the ectopic appearance of squamous VE-like epithelial cells in the presumptive ME region, together with reduced cell density and aberrant morphology of PE cells. Such aberrant ME formation in the Sox17-null extraembryonic endoderm was not rescued by the chimeric embryo replaced with the wild-type gut endoderm by the injection of wild-type ES cells into the Sox17-null blastocyst, suggesting the cell autonomous defects in the extraembryonic endoderm of Sox17-null concepti. These findings provide direct evidence of the crucial roles of SOX17 in proper formation and maintenance of the ME region, highlighting a novel entry point to understand the in vivo VE-to-PE transition in the marginal edge of developing placenta.


Asunto(s)
Desarrollo Embrionario/fisiología , Endodermo/fisiología , Proteínas HMGB/fisiología , Placentación/fisiología , Factores de Transcripción SOXF/fisiología , Saco Vitelino/fisiología , Animales , Proliferación Celular , Femenino , Expresión Génica , Genotipo , Proteínas HMGB/deficiencia , Proteínas HMGB/genética , Masculino , Ratones , Ratones Noqueados , Embarazo , Factores de Transcripción SOXF/deficiencia , Factores de Transcripción SOXF/genética
5.
Development ; 141(19): 3772-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209250

RESUMEN

Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.


Asunto(s)
Tipificación del Cuerpo/fisiología , Endodermo/fisiología , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Glicoproteínas/metabolismo , Transducción de Señal/fisiología , Activinas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Animales , Ensayo de Cambio de Movilidad Electroforética , Redes Reguladoras de Genes/genética , Vectores Genéticos/genética , Proteínas HMGB/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Luciferasas , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción SOXF/metabolismo
6.
Development ; 140(3): 639-48, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293295

RESUMEN

Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute 'embryonic hepatitis', leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17(+/-) B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17(+/-) gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.


Asunto(s)
Atresia Biliar/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/metabolismo , Haploinsuficiencia , Factores de Transcripción SOXF/metabolismo , Animales , Animales Recién Nacidos , Conductos Biliares/metabolismo , Conductos Biliares/patología , Atresia Biliar/patología , Proliferación Celular , Colestasis/genética , Colestasis/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Estrés del Retículo Endoplásmico , Epitelio/metabolismo , Epitelio/patología , Femenino , Vesícula Biliar/metabolismo , Vesícula Biliar/ultraestructura , Proteínas HMGB/genética , Hepatitis Animal/genética , Hepatitis Animal/metabolismo , Hepatitis Animal/patología , Hepatocitos/metabolismo , Heterocigoto , Inmunohistoquímica , Hígado/metabolismo , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Embarazo , Factores de Transcripción SOXF/genética , Factores de Tiempo
7.
Development ; 139(2): 359-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22186726

RESUMEN

Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.


Asunto(s)
Movimiento Celular/fisiología , Ojo/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Pez Cebra/embriología , Análisis de Varianza , Animales , Ciclo Celular/fisiología , Embrión de Pollo , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Cristalino/fisiología , Retina/citología , Retina/fisiología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Factores de Tiempo
8.
Development ; 139(13): 2426-35, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627279

RESUMEN

In the mouse, the initial signals that establish left-right (LR) asymmetry are determined in the node by nodal flow. These signals are then transferred to the lateral plate mesoderm (LPM) through cellular and molecular mechanisms that are not well characterized. We hypothesized that endoderm might play a role in this process because it is tightly apposed to the node and covers the outer surface of the embryo, and, just after nodal flow is established, higher Ca(2+) flux has been reported on the left side near the node, most likely in the endoderm cells. Here we studied the role of endoderm cells in the transfer of the LR asymmetry signal by analyzing mouse Sox17 null mutant embryos, which possess endoderm-specific defects. Sox17(-/-) embryos showed no expression or significantly reduced expression of LR asymmetric genes in the left LPM. In Sox17 mutant endoderm, the localization of connexin proteins on the cell membrane was greatly reduced, resulting in defective gap junction formation, which appeared to be caused by incomplete development of organized epithelial structures. Our findings suggest an essential role of endoderm cells in the signal transfer step from the node to the LPM, possibly using gap junction communication to establish the LR axis of the mouse.


Asunto(s)
Tipificación del Cuerpo , Desarrollo Embrionario , Endodermo/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Mesodermo/metabolismo , Animales , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Transducción de Señal
9.
Genesis ; 52(6): 503-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753065

RESUMEN

A central unresolved question in the molecular cascade that drives establishment of left-right (LR) asymmetry in vertebrates are the mechanisms deployed to relay information between the midline site of symmetry-breaking and the tissues which will execute a program of asymmetric morphogenesis. The cells located between these two distant locations must provide the medium for signal relay. Of these, the gut endoderm is an attractive candidate tissue for signal transmission since it comprises the epithelium that lies between the node, where asymmetry originates, and the lateral plate, where asymmetry can first be detected. Here, focusing on the mouse as a model, we review our current understanding and entertain open questions concerning the relay of LR information from its origin.


Asunto(s)
Tipificación del Cuerpo/fisiología , Tracto Gastrointestinal/embriología , Animales , Desarrollo Embrionario/fisiología , Endodermo/embriología , Gástrula/embriología , Humanos , Ratones , Morfogénesis/fisiología , Transducción de Señal
10.
Dev Biol ; 353(2): 321-30, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21419113

RESUMEN

Left-right (L-R) asymmetry in the mouse embryo is generated in the node and is dependent on cilia-driven fluid flow, but how the initial asymmetry is transmitted from the node to the lateral plate has remained unknown. We have now identified a transcriptional enhancer (ANE) in the human LEFTY1 gene that exhibits marked L>R asymmetric activity in perinodal cells of the mouse embryo. Dissection of ANE revealed that it is activated in the perinodal cells on the left side by Nodal signaling, suggesting that Nodal activity in the node is asymmetric at a time when Nodal expression is symmetric. Phosphorylated Smad2/3 (pSmad2) indeed manifested an L-R asymmetric distribution at the node, being detected in perinodal cells preferentially on the left side. This asymmetry in pSmad2 distribution was found to be generated not by unidirectional transport of Nodal but rather as a result of LR distribution of active Nodal in the node is translated into the asymmetry in LPM.


Asunto(s)
Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Mesodermo/embriología , Proteína Nodal/genética , Proteína Nodal/fisiología , Animales , Transporte Biológico Activo , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Factores de Determinación Derecha-Izquierda/genética , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Fosforilación , Embarazo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
11.
Hum Mol Genet ; 19(7): 1286-301, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20071345

RESUMEN

Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (approximately 7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (approximately 30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR.


Asunto(s)
Cardiopatías Congénitas/genética , Venas Pulmonares/anomalías , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Embrión de Pollo , Humanos , Ratones , Ratones Mutantes , Modelos Animales , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
12.
Development ; 136(23): 3895-906, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906857

RESUMEN

A crucial step in eye organogenesis is the transition of the optic vesicle into the optic cup. Several transcription factors and extracellular signals mediate this transition, but whether a single factor links them into a common genetic network is unclear. Here, we provide evidence that the LIM homeobox gene Lhx2, which is expressed in the optic neuroepithelium, fulfils such a role. In Lhx2(-/-) mouse embryos, eye field specification and optic vesicle morphogenesis occur, but development arrests prior to optic cup formation in both the optic neuroepithelium and lens ectoderm. This is accompanied by failure to maintain or initiate the expression patterns of optic-vesicle-patterning and lens-inducing determinants. Of the signaling pathways examined, only BMP signaling is noticeably altered and Bmp4 and Bmp7 mRNAs are undetectable. Lhx2(-/-) optic vesicles and lens ectoderm upregulate Pax2, Fgf15 and Sox2 in response to BMP treatments, and Lhx2 genetic mosaics reveal that transcription factors, including Vsx2 and Mitf, require Lhx2 cell-autonomously for their expression. Our data indicate that Lhx2 is required for optic vesicle patterning and lens formation in part by regulating BMP signaling in an autocrine manner in the optic neuroepithelium and in a paracrine manner in the lens ectoderm. We propose a model in which Lhx2 is a central link in a genetic network that coordinates the multiple pathways leading to optic cup formation.


Asunto(s)
Ojo/embriología , Proteínas de Homeodominio/fisiología , Organogénesis/fisiología , Factores de Transcripción/fisiología , Animales , Tipificación del Cuerpo/genética , Embrión de Mamíferos , Técnica del Anticuerpo Fluorescente Directa , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas con Homeodominio LIM , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Técnicas de Cultivo de Órganos , Organogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Surg Res ; 175(1): 82-7, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21492869

RESUMEN

BACKGROUND: Homozygous null mutation of fibroblast growth factor receptor 2 (Fgfr2IIIb) or its ligand fibroblast growth factor 10 (Fgf10) results in duodenal atresia in mice. Mutations of either of these genes in humans cause Matthew-Wood syndrome and associated duodenal stenosis. Recently, mutations in the retinol-binding protein receptor gene STRA6 were reported to be implicated in this syndrome as well. This suggests that the retinoic acid (RA) signaling pathway interacts with the Fgf10-Fgfr2IIIb signaling pathway during duodenal development. Accordingly, we hypothesized that Fgfr2IIIb-/- mouse embryos would exhibit disruptions in expression of Raldh2, the gene for the enzyme that regulates the final step in the conversion of vitamin A to the active form RA, during duodenal atresia formation. MATERIALS AND METHODS: Fgfr2III -/- mice were generated from heterozygous breedings. Embryos were harvested between embryonic day (E) 11.0 to E 13.5 and genotyped by polymerase chain reaction (PCR). Duodenums were dissected out, fixed and photographed. Whole mount and section in situs were performed for Raldh2. RESULTS: Fgfr2IIIb-/- embryos demonstrate subtle changes in the duodenal morphology by E11.5 with complete involution of the atretic precursor by E 13.5. Raldh2 appears to be down-regulated as early as E 11.5 in the atretic precursor a full 2 days before this segment disappears. CONCLUSIONS: In Fgfr2IIIb-/- mouse embryos, a reduction of Raldh2 expression is observed within the region that is forming the atresia. This is the first demonstration of such an event in this model. As in humans, these results implicate disruptions between Fgfr2IIIb receptor function and RA signaling in the formation of this defect and indicate that Fgfr2IIIb-/- mouse embryos are a valid model for the study of the atretic spectrum of defects in human duodenal development.


Asunto(s)
Aldehído Oxidorreductasas/biosíntesis , Obstrucción Duodenal/embriología , Obstrucción Duodenal/genética , Duodeno/embriología , Duodeno/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Aldehído Oxidorreductasas/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Obstrucción Duodenal/congénito , Duodeno/anomalías , Atresia Intestinal , Ratones , Ratones Endogámicos , Eliminación de Secuencia , Transducción de Señal/genética , Tretinoina/metabolismo , Vitamina A/metabolismo
14.
Methods Mol Biol ; 2303: 595-603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626409

RESUMEN

Xylosides are small synthetic molecules consisting of a xylose molecule attached to an aglycone group and serve as primers in the assembly of core protein free glycosaminoglycans using cellular machinery. Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. Recent advances in the study of xylosides have opened up the possibility of developing xylosides as therapeutics to achieve a desirable biological outcome through their selective priming and inhibitory activities toward glycosaminoglycan biosynthesis. The approach described, herein, will serve as a general strategy to comprehensively screen xylosides and evaluate their ability to promote or inhibit angiogenesis, a critical biological process that is dysregulated in over 70 human diseases.


Asunto(s)
Glicósidos/química , Glicosaminoglicanos , Humanos , Neovascularización Patológica , Xilosa
15.
Methods Mol Biol ; 2303: 645-653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626413

RESUMEN

The primary left and right bronchial buds grow and sprout secondary bronchi, which in turn develop tertiary bronchi, and so on. Branching continues for a total of 6-8 generations in the mouse and for about 23 generations in humans, forming the estimated 50 million branches of the human lung. Thus, patterns of branching are incalculably complex. However, these branches are rarely random, implying that they are under genetic control. Genomic information alone cannot specify the patterning information in terms of where the branching occurs and the direction it grows as well as their size and shape. There is a complex choreography among glycosaminoglycans and growth factors/morphogens that provide a highly complex instructive cues that control lung branching and development of the functional lung. Herein, we describe the use of xylosides in the manipulation of glycosaminoglycan (GAG) biosynthesis and study the effect of xyloside-primed GAGs in the regulation of lung branching events.


Asunto(s)
Pulmón , Animales , Glicosaminoglicanos , Glicósidos , Ratones , Morfogénesis , Técnicas de Cultivo de Tejidos
16.
Commun Biol ; 5(1): 996, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131094

RESUMEN

Clockwise rotation of the primitive heart tube, a process regulated by restricted left-sided Nodal signaling, is the first morphological manifestation of left-right asymmetry. How Nodal regulates cell behaviors to drive asymmetric morphogenesis remains poorly understood. Here, using high-resolution live imaging of zebrafish embryos, we simultaneously visualized cellular dynamics underlying early heart morphogenesis and resulting changes in tissue shape, to identify two key cell behaviors: cell rearrangement and cell shape change, which convert initially flat heart primordia into a tube through convergent extension. Interestingly, left cells were more active in these behaviors than right cells, driving more rapid convergence of the left primordium, and thereby rotating the heart tube. Loss of Nodal signaling abolished the asymmetric cell behaviors as well as the asymmetric convergence of the left and right heart primordia. Collectively, our results demonstrate that Nodal signaling regulates the magnitude of morphological changes by acting on basic cellular behaviors underlying heart tube formation, driving asymmetric deformation and rotation of the heart tube.


Asunto(s)
Miocardio , Pez Cebra , Animales , Corazón/fisiología , Rotación , Proteínas de Pez Cebra
17.
Methods Mol Biol ; 2303: 779-788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626422

RESUMEN

The extracellular matrix (ECM) plays a pivotal role in the regulation of neural stem cell differentiation, axon guidance and growth, and neural plasticity. Glycosaminoglycans, such as heparan sulfate and chondroitin sulfate, are significant components of brain ECM that dictates neurogenesis and neural repair. Herein, we describe a simple method to assess the effect of xylsoides, which serve as primers and inhibitors of GAG biosynthesis, on human neural stem cell differentiation and neurite outgrowth in in vitro culture conditions.


Asunto(s)
Nicho de Células Madre , Diferenciación Celular , Glicósidos , Humanos , Proyección Neuronal
18.
Front Cardiovasc Med ; 9: 1033457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419485

RESUMEN

Aims: PERM1 is a striated muscle-specific regulator of mitochondrial bioenergetics. We previously demonstrated that PERM1 is downregulated in the failing heart and that PERM1 positively regulates metabolic genes known as targets of the transcription factor ERRα and its coactivator PGC-1α in cultured cardiomyocytes. The aims of this study were to determine the effect of loss of PERM1 on cardiac function and energetics using newly generated Perm1-knockout (Perm1 -/-) mice and to investigate the molecular mechanisms of its transcriptional control. Methods and results: Echocardiography showed that ejection fraction and fractional shortening were lower in Perm1 -/- mice than in wild-type mice (both p < 0.05), and the phosphocreatine-to-ATP ratio was decreased in Perm1 -/- hearts (p < 0.05), indicating reduced contractile function and energy reserves of the heart. Integrated proteomic and metabolomic analyses revealed downregulation of oxidative phosphorylation and upregulation of glycolysis and polyol pathways in Perm1 -/- hearts. To examine whether PERM1 regulates energy metabolism through ERRα, we performed co-immunoprecipitation assays, which showed that PERM1 bound to ERRα in cardiomyocytes and the mouse heart. DNA binding and reporter gene assays showed that PERM1 was localized to and activated the ERR target promoters partially through ERRα. Mass spectrometry-based screening in cardiomyocytes identified BAG6 and KANK2 as potential PERM1's binding partners in transcriptional regulation. Mammalian one-hybrid assay, in which PERM1 was fused to Gal4 DNA binding domain, showed that the recruitment of PERM1 to a gene promoter was sufficient to activate transcription, which was blunted by silencing of either PGC-1α, BAG6, or KANK2. Conclusion: This study demonstrates that PERM1 is an essential regulator of cardiac energetics and function and that PERM1 is a novel transcriptional coactivator in the ERRα/PGC-1α axis that functionally interacts with BAG6 and KANK2.

19.
Dev Cell ; 10(4): 451-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16580991

RESUMEN

The earliest recognizable sign of patterning of the mouse embryo along the anteroposterior (A-P) axis is the migration of the distal visceral endoderm (DVE) toward the future anterior side. Here we report an asymmetry in the mouse embryo at an unexpectedly early stage. The gene for Lefty1, a Nodal antagonist that influences the direction of DVE migration, was found to be asymmetrically expressed in the primitive endoderm of the implanting blastocyst. Lefty1 expression begins randomly in the inner cell mass (ICM) of the blastocyst but is regionalized to one side of the tilted ICM shortly after implantation. Asymmetric expression of Lefty1 can be established by in vitro culture, indicating that it does not require interaction with the uterus. The asymmetric Lefty1 expression is induced by Nodal signaling, although Nodal and genes for its effectors are expressed symmetrically. This asymmetry in molecular patterning of the mouse embryo pushes back the origin of the A-P body axis to the peri-implantation stage.


Asunto(s)
Tipificación del Cuerpo/fisiología , Polaridad Celular/fisiología , Implantación del Embrión/fisiología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Secuencia de Bases , Blastómeros/fisiología , Tipificación del Cuerpo/genética , Polaridad Celular/genética , Células Cultivadas , Implantación del Embrión/genética , Técnicas In Vitro , Factores de Determinación Derecha-Izquierda , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteína Nodal , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/genética
20.
J Surg Res ; 170(1): 107-11, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21550054

RESUMEN

BACKGROUND: The murine cecum is a critical digestive structure. Morphogenesis of the cecum involves several key genes, including Homeobox (Hox) d12. Ectopic expression of Hoxd12 has been shown to result in cecal agenesis and a down-regulation of both Fibroblast growth factor 10 (Fgf10) and the Pituitary homeobox 2 gene (Pitx2). Homozygous null mutation of Fgf10 or its cognate receptor Fgfr2IIIb results in severe cecal defects where there is the initiation of mesodermal budding, but a failure of the endoderm to grow and extend into this structure. We examined the expression of Pitx2 in the cecum and hypothesized that homozygous null mutation of Pitx2 would result in cecal agenesis. METHODS: IACUC approval was obtained for these studies. Whole mount in situ hybridizations for Pitx2 were performed on wild-type embryos between embryonic d (E)11.0 and E12.5. Pitx2 -/- and Fgfr2IIIb -/- embryos were generated from n/+ heterozygote breedings and harvested at E10.5, E11.5, and E13.5. Genotypes were confirmed by PCR. Morphology of Pitx2 -/- cecae were compared with those of wild-type littermates and Fgfr2IIIb -/- embryos at identical stages. Embryos were fixed overnight and photographed the following day. RESULTS: Pitx2 is expressed in the cecal mesoderm and endoderm as early as E11.0. Expression becomes increasingly more robust by E12.5. Homozygous null mutation of Pitx2 results in agenesis of the cecum. In contrast to Fgfr2IIIb -/- embryos, which demonstrate a persistent mesodermal bud as late as E18.5, no mesodermal bud is present in Pitx2 -/- embryos. CONCLUSIONS: Our findings demonstrate that Pitx2 is a critical regulatory gene in cecal morphogenesis and suggest that Pitx2 is required for initiation of mesodermal budding and likely resides upstream of Fgf10-Fgfr2IIIb signaling in the normal development of this structure.


Asunto(s)
Ciego/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Animales , Factor 10 de Crecimiento de Fibroblastos/fisiología , Genes Reguladores , Proteínas de Homeodominio/genética , Ratones , Morfogénesis , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA