Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034253

RESUMEN

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Asunto(s)
Axones/metabolismo , Vías Olfatorias/embriología , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Vías Olfatorias/citología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
2.
J Neurophysiol ; 130(6): 1464-1479, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910664

RESUMEN

To understand the neural mechanisms of perceptual filling-in at the blind spot (BS), we analyzed neural activity in the region representing the visual field corresponding to the BS (BS region) in the primary visual cortex (V1) of the macaque monkey. We inserted a linear array electrode into the BS region or surrounding region and recorded the multiunit activities (MUAs) and local field potential (LFP). We examined the responses of MUAs and LFP to a large visual stimulus that entirely covered the BS (surface stimuli) while the monkey performed a visual fixation task in either the monocular condition without receiving direct retinal input or the binocular condition receiving retinal information. We observed clear MUA responses in the deep layers within the BS region under monocular conditions, confirming previous reports that V1 neurons in the BS region are activated when perceptual filling-in occurs. Current source density analysis using LFP showed that MUA responses were mainly observed in layer 5. Although LFP responses were generally stronger in the binocular condition than in the monocular condition, a notable exception was observed in the BS region. LFP responses in the low-beta band in the superficial layers were stronger in the monocular condition than in the binocular condition. These results suggest that low-beta activity in the superficial layer is related to the occurrence of perceptual filling-in in the BS. The origin of this activity is considered to be feedback signals from the extrastriate areas to the V1.NEW & NOTEWORTHY Two characteristic activities were induced in the blind spot (BS) region in response to the stimulus, causing perceptual filling-in: 1) beta-band LFP responses in the superficial layers and 2) neuronal responses in the deep layers, mainly in layer 5. These data suggest that the feedback signal from the extrastriate areas to the BS region in V1 is involved in perceptual filling-in.


Asunto(s)
Macaca , Percepción Visual , Animales , Percepción Visual/fisiología , Corteza Visual Primaria , Campos Visuales , Retina/fisiología , Estimulación Luminosa/métodos
3.
Nat Commun ; 8: 16011, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28685774

RESUMEN

Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion.


Asunto(s)
Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Percepción Olfatoria/fisiología , Receptores Odorantes/genética , Olfato/fisiología , Tiazoles/farmacología , Animales , Agentes Aversivos/aislamiento & purificación , Agentes Aversivos/farmacología , Conducta Animal/efectos de los fármacos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Miedo/psicología , Heces/química , Zorros , Reacción Cataléptica de Congelación/fisiología , Expresión Génica , Técnicas de Sustitución del Gen , Masculino , Ratones , Odorantes/análisis , Bulbo Olfatorio/fisiología , Estimulación Luminosa , Receptores Odorantes/metabolismo , Técnicas Estereotáxicas , Tiazoles/aislamiento & purificación
4.
Sci Signal ; 2(60): ra9, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19261596

RESUMEN

Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of more than 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and for unraveling mammalian odor coding.


Asunto(s)
Modelos Biológicos , Odorantes/análisis , Receptores Odorantes/metabolismo , Olfato/fisiología , Algoritmos , Animales , Citometría de Flujo , Humanos , Inmunohistoquímica , Luciferasas , Ratones , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Especificidad de la Especie , Relación Estructura-Actividad
5.
Cell ; 119(5): 679-91, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15550249

RESUMEN

Transport of G protein-coupled receptors (GPCRs) to the cell surface membrane is critical in order for the receptors to recognize their ligands. However, mammalian GPCR odorant receptors (ORs), when heterologously expressed in cells, are poorly expressed on the cell surface. Here we show that the transmembrane proteins RTP1 and RTP2 promote functional cell surface expression of ORs expressed in HEK293T cells. Genes encoding these proteins are expressed specifically in olfactory neurons. These proteins are associated with OR proteins and enhance the OR responses to odorants. Similar although weaker effects were seen with a third protein, REEP1. These findings suggest that RTP1 and RTP2 in particular play significant roles in the translocation of ORs to the plasma membrane as well as in the functioning of ORs. We have used this approach to identify active odorant ligands for ORs, providing a platform for screening the chemical selectivity of the large OR family.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , ADN Complementario/análisis , ADN Complementario/genética , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/fisiología , Humanos , Ligandos , Mamíferos/anatomía & histología , Mamíferos/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/aislamiento & purificación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas Receptoras Olfatorias/efectos de los fármacos , Filogenia , Transporte de Proteínas/fisiología , Receptores Odorantes/efectos de los fármacos , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Olfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA