Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33713597

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Asunto(s)
COVID-19 , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral , SARS-CoV-2 , Animales , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
2.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36971369

RESUMEN

Failure of central nervous system projection neurons to spontaneously regenerate long-distance axons underlies irreversibility of white matter pathologies. A barrier to axonal regenerative research is that the axons regenerating in response to experimental treatments stall growth before reaching post-synaptic targets. Here, we test the hypothesis that the interaction of regenerating axons with live oligodendrocytes, which were absent during developmental axon growth, contributes to stalling axonal growth. To test this hypothesis, first, we used single cell RNA-seq (scRNA-seq) and immunohistology to investigate whether post-injury born oligodendrocytes incorporate into the glial scar after optic nerve injury. Then, we administered demyelination-inducing cuprizone and stimulated axon regeneration by Pten knockdown (KD) after optic nerve crush. We found that post-injury born oligodendrocyte lineage cells incorporate into the glial scar, where they are susceptible to the demyelination diet, which reduced their presence in the glial scar. We further found that the demyelination diet enhanced Pten KD-stimulated axon regeneration and that localized cuprizone injection promoted axon regeneration. We also present a resource for comparing the gene expression of scRNA-seq-profiled normal and injured optic nerve oligodendrocyte lineage cells.


Asunto(s)
Axones , Enfermedades Desmielinizantes , Humanos , Axones/fisiología , Gliosis/metabolismo , Gliosis/patología , Cuprizona , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/metabolismo , Oligodendroglía , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo
3.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38284656

RESUMEN

Lithium bis(fluorosulfonyl)imide (Li-TFSI) is an efficient p-dopant that has been used to enhance the conductivity of perovskite solar cells (PSCs). However, the performance of the corresponding devices is still not satisfactory due to the impact of Li-TFSI on the fill factor and the short-circuit current density of these PSCs. Herein, a new Mn complex [(Mn(Me-tpen)(ClO4)2-)]2+ was introduced as a p-type dopant into spiro-OMeTAD and was successfully applied as a hole transport material (HTM) for PSCs. Analytical studies used for device characterization included scanning electron microscopy, UV-Vis spectroscopy, current-voltage (IV) characteristics, incident photon to current efficiency, power conversion efficiency (PCE), and electrochemical impedance spectroscopy. The UV-Vis spectra displayed oxidation in the HTM by the addition of a dopant. Moreover, the movement of electrons from the higher orbital of the spiro-OMeTAD to the dopant stimulates the generation of the hole carriers in the HTM, enhancing its conductivity with outstanding long-term stability under mild conditions in a humid (RH ∼ 30%) environment. The incorporation of the Mn complex into the composite improved the material's properties and the stability of the fabricated devices. The Mn complex as a p-type dopant for spiro-OMeTAD exhibits a perceptible PCE of 16.39% with an enhanced conductivity of 98.13%. This finding may pave a rational way for developing efficient and stable PSCs in real environments.

4.
Foodborne Pathog Dis ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394319

RESUMEN

This study holds significant importance due to its focus on Campylobacter, the leading bacterial cause of gastroenteritis worldwide, responsible for ∼96 million cases each year. By investigating the prevalence of both Campylobacter jejuni and Campylobacter coli in humans, animals, and the environment, this research sheds light on the broader impact of these pathogens, which can harm both human and animal populations. Traditional microbiological methods were implemented followed by optimized multiplex polymerase chain reaction targeting 16S rDNA and virulence gene markers by using specific primers. The findings revealed that a total of 219 Campylobacter isolates were recovered from 528 collected specimens from human, animal, and environmental sources. Campylobacter species showed a prevalence of 41.5%, with C. jejuni accounting for 53% and C. coli for 47%. Antimicrobial resistance rates were high, with tetracycline at 89%, ceftriaxone at 75%, cefotaxime at 70%, erythromycin at 69%, nalidixic acid at 54%, ciprofloxacin at 39%, and gentamicin at 23%. Commonly prevalent virulence-associated genes observed in the Campylobacter were cadF at 93%, flaA at 91%, cdtB at 88%, cheY at 86%, sodB at 78%, and iamA at 32%. The study confirmed multidrug-resistant Campylobacter prevalence at the human-animal-environment interface, harboring virulence-associated genes with potential harm to humans. Data analysis showed a nonsignificant (p ≥ 0.05) correlation between virulence genes and antibiotic susceptibility. To effectively manage Campylobacter infections, a multifaceted strategy incorporating preventative interventions at different levels is required. This strategy should take into account practicability, effectiveness, and sustainability while strengthening surveillance systems and addressing the economics of disease prevention.

5.
Adv Physiol Educ ; 48(2): 205-210, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205516

RESUMEN

Medical education continually adapts to the needs of future health care professionals, with student motivation in research being a pivotal aspect. This study at Alfaisal University aimed to explore the motivations, benefits, and challenges faced by medical students in extracurricular research activities. Using a mixed-method approach, we combined quantitative surveys with qualitative group interviews. Findings revealed that both extrinsic (e.g., enhancing postgraduate training prospects) and intrinsic (e.g., personal interest and skill refinement) factors significantly motivate students to be involved in research activities. Participants unanimously acknowledged skill enhancement, particularly in literature comprehension, creative ideation, and networking. However, challenges such as conflicts with course scheduling, lack of hands-on experiences, and mentorship issues were identified as potential barriers to research participation. Addressing these barriers and understanding motivations can inform the design of research programs, enhancing the overall student research experience. This study underscores the importance of research in medical education, emphasizing the need for institutions to prioritize addressing challenges and leveraging benefits to prepare medical students for a research-integrated clinical future.NEW & NOTEWORTHY This article examines the motivating factors and obstacles of extracurricular research in Alfaisal University, Saudi Arabia. The study utilizes a mixed methodology of online surveys and in-person group interviews to gain insights from the medical students of the university. We revealed several extrinsic and intrinsic motivators that drove the students; however, there remain several challenges to students during their research journey. Addressing these challenges will help the students obtain a more fruitful, educational research experience.


Asunto(s)
Educación Médica , Estudiantes de Medicina , Humanos , Universidades , Motivación , Curriculum
6.
Nano Lett ; 23(20): 9664-9671, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37638682

RESUMEN

Aqueous proton batteries (APBs) have emerged as one of the most promising batteries for large-scale energy storage technology. However, they usually show an undesirable electrochemical performance. Herein, we demonstrate a novel aqueous catalytic hydrogen gas powered organic proton (HOP) battery, which is driven by hydrogen evolution/oxidation redox reactions via commercial nanocatalysts on the anode and coordination/decoordination reactions of C═O with H+ on the cathode. The HOP battery shows an excellent rate capacity of 190.1 mAh g-1 at 1 A g-1 and 71.4 mAh g-1 at 100 A g-1. It also delivers a capacity of 96.6 mAh g-1 after 100000 cycles and operates at temperatures down to -70 °C. Moreover, the HOP battery is fabricated in a large-scale pouch cell with an extended capacity, exhibiting its potential for practical energy storage applications. This work provides new insights into the building of sustainable APBs, which will broaden the horizons of high-performance aqueous batteries.

7.
Angew Chem Int Ed Engl ; 63(7): e202315931, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050465

RESUMEN

Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.

8.
Angew Chem Int Ed Engl ; : e202404784, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868978

RESUMEN

The zinc-iodine aqueous battery is a promising energy storage device, but the conventional two-electron reaction potential and energy density of the iodine cathode are far from meeting practical application requirements. Given that iodine is rich in redox reactions, activating the high-valence iodine cathode reaction has become a promising research direction for developing high-voltage zinc-iodine batteries. In this work, by designing a multifunctional electrolyte additive trimethylamine hydrochloride (TAH), a stable high-valence iodine cathode in four-electron-transfer I-/I2/I+ reactions with a high theoretical specific capacity is achieved through a unique amine group, Cl bidentate coordination structure of (TA)ICl. Characterization techniques such as synchrotron radiation, in-situ Raman spectra, and DFT calculations are used to verify the mechanism of the stable bidentate structure. This electrolyte additive stabilizes the zinc anode by promoting the desolvation process and shielding mechanism, enabling the zinc anode to cycle steadily at a maximum areal capacity of 57 mAh cm-2 with 97% zinc utilization rate. Finally, the four-electron-transfer aqueous Zn-I2 full cell achieves 5000 stable cycles at an N/P ratio of 2.5. The unique bidentate coordination structure contributes to the further development of high-valence and high capacity aqueous zinc-iodine batteries.

9.
J Neurosci ; 42(30): 5899-5915, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35705490

RESUMEN

While conflict between incompatible goals has well-known effects on actions, in many situations the same action may produce harmful or beneficial consequences during different periods in a nonconflicting manner, e.g., crossing the street during a red or green light. To avoid harm, subjects must be cautious to inhibit the action specifically when it is punished, as in passive avoidance, but act when it is beneficial, as in active avoidance or active approach. In mice of both sexes performing a signaled action to avoid harm or obtain reward, we found that addition of a new rule that punishes the action when it occurs unsignaled delays the timing of the signaled action in an apparent sign of increased caution. Caution depended on task signaling, contingency, and reinforcement type. Interestingly, caution became persistent when the signaled action was avoidance motivated by danger but was only transient when it was approach motivated by reward. Although caution is represented by the activity of neurons in the midbrain, it developed independent of frontal cortex or basal ganglia output circuits. These results indicate that caution disrupts actions in different ways depending on the motivational state and may develop from unforeseen brain circuits.SIGNIFICANCE STATEMENT Actions, such as crossing the street at a light, can have benefits during one light signal (getting somewhere) but can be harmful during a different signal (being run over). Humans must be cautious to cross the street during the period marked by the appropriate signal. In mice performing a signaled action to avoid harm or obtain reward, we found that addition of a new rule that punishes the action when it occurs unsignaled, delays the timing of the signaled action in an apparent sign of increased caution. Caution became persistent when the signaled action was motivated by danger, but not when it was motivated by reward. Moreover, the development of caution did not depend on prototypical frontal cortex circuits.


Asunto(s)
Refuerzo en Psicología , Recompensa , Animales , Reacción de Prevención/fisiología , Ganglios Basales/fisiología , Conducta de Elección , Femenino , Humanos , Masculino , Mesencéfalo/fisiología , Ratones
10.
J Am Chem Soc ; 145(46): 25422-25430, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37877747

RESUMEN

Hydrogen-chlorine (H2-Cl2) fuel cells have distinct merits due to fast electrochemical kinetics but are afflicted by high cost, low efficiency, and poor reversibility. The development of a rechargeable H2-Cl2 battery is highly desirable yet challenging. Here, we report a rechargeable H2-Cl2 battery operating statically in a wide temperature ranging from -70 to 40 °C, which is enabled by a reversible Cl2/Cl- redox cathode and an electrocatalytic H2 anode. A hierarchically porous carbon cathode is designed to achieve effective Cl2 gas confinement and activate the discharge plateau of Cl2/Cl- redox at room temperature, with a discharge plateau at ∼1.15 V and steady cycling for over 500 cycles without capacity decay. Furthermore, the battery operation at an ultralow temperature is successfully achieved in a phosphoric acid-based antifreezing electrolyte, with a reversible discharge capacity of 282 mAh g-1 provided by the highly porous carbon at -70 °C and an average Coulombic efficiency of 91% for more than 300 cycles at -40 °C. This work offers a new strategy to enhance the reversibility of aqueous chlorine batteries for energy storage applications in a wide temperature range.

11.
IUBMB Life ; 75(2): 161-180, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565478

RESUMEN

This study was designed to screen novel thiourea derivatives against different enzymes, such as α-amylase, α-glucosidase, protein tyrosine phosphatase 1 B, and advanced glycated end product (AGEs). A cytotoxicity analysis was performed using rat L6 myotubes and molecular docking analysis was performed to map the binding interactions between the active compounds and α-amylase and α-glucosidase. The data revealed the potency of five compounds, including E (1-(2,4-difluorophenyl)-3-(3,4-dimethyl phenyl) thiourea), AG (1-(2-methoxy-5-(trifluoromethyl) phenyl)-3-(3-methoxy phenyl) thiourea), AF (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), AD (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), and AH (1-(2,4-difluorophenyl)-3-(2-iodophenyl) thiourea), showed activity against α-amylase. The corresponding percentage inhibitions were found to be 85 ± 1.9, 82 ± 0.7, 75 ± 1.2, 72 ± 0.4, and 65 ± 1.1%, respectively. These compounds were then screened using in vitro assays. Among them, AH showed the highest activity against α-glucosidase, AGEs, and PTP1B, with percentage inhibitions of 86 ± 0.4% (IC50  = 47.9 µM), 85 ± 0.7% (IC50  = 49.51 µM), and 85 ± 0.5% (IC50  = 79.74 µM), respectively. Compound AH showed an increased glucose uptake at a concentration of 100 µM. Finally, an in vivo study was conducted using a streptozotocin-induced diabetic mouse model and PTP1B expression was assessed using real-time PCR. Additionally, we examined the hypoglycemic effect of compound AH in diabetic rats compared to the standard drug glibenclamide.


Asunto(s)
Diabetes Mellitus Experimental , alfa-Glucosidasas , Ratones , Ratas , Animales , alfa-Glucosidasas/genética , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Reacción de Maillard , Hipoglucemiantes/farmacología , Productos Finales de Glicación Avanzada/genética , alfa-Amilasas , Tiourea/farmacología
12.
Genet Res (Camb) ; 2023: 9999660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829154

RESUMEN

EDSS1, a syndrome characterized by ectodermal dysplasia-syndactyly, is inherited in an autosomal recessive manner due to mutations in the NECTIN4/PVRL4 gene. Clinical manifestations of the syndrome include defective nail plate, sparse to absent scalp and body hair, spaced teeth with enamel hypoplasia, and bilateral cutaneous syndactyly in the fingers and toes. Here, we report a consanguineous family of Kashmiri origin presenting features of EDSS1. Using whole exome sequencing, we found a recurrent nonsense mutation (NM_030916: c.181C > T, p.(Gln61 ∗)) in the NECTIN4 gene. The variant segregated perfectly with the disorder within the family. The candidate variant was absent in 50 in-house exomes pertaining to other disorders from the same population. In addition to the previously reported clinical phenotype, an upper lip cleft was found in one of the affected members as a novel phenotype that is not reported by previous studies in EDSS1 patients. Therefore, the study presented here, which was conducted on the Kashmiri population, is the first to document a NECTIN4 mutation associated with the upper lip cleft as a novel phenotype. This finding broadens the molecular and phenotypic spectrum of EDSS1.


Asunto(s)
Labio Leporino , Displasia Ectodérmica , Anomalías Maxilomandibulares , Nectinas , Sindactilia , Humanos , Alopecia/complicaciones , Moléculas de Adhesión Celular/genética , Labio Leporino/genética , Labio Leporino/complicaciones , Codón sin Sentido/genética , Consanguinidad , Displasia Ectodérmica/genética , Displasia Ectodérmica/complicaciones , Anomalías Maxilomandibulares/complicaciones , Mutación , Nectinas/genética , Linaje , Fenotipo , Sindactilia/genética , Sindactilia/complicaciones , Síndrome
13.
J Surg Res ; 291: 734-741, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37573638

RESUMEN

INTRODUCTION: The use of optimal skin antiseptic agents for the prevention of surgical site infection (SSI) is of critical importance, especially during abdominal surgical procedures. Alcohol-based chlorhexidine gluconate (CHG) and aqueous-based povidone-iodine (PVI) are the two most common skin antiseptics used nowadays. The objective of this article is to evaluate the effectiveness of alcohol-based CHG versus aqueous-based PVI used for skin preparation before abdominal surgery to reduce SSIs. METHODS: Standard medical databases such as MEDLINE, Embase, Pubmed, and Cochrane Library were searched to find randomized, controlled trials comparing alcohol-based CHG skin preparation versus aqueous-based PVI in patients undergoing abdominal surgery. The combined outcomes of SSIs were calculated using odds ratio with 95% confidence intervals. All data were analyzed using Review Manager Software 5.4, and the meta-analysis was performed with a random effect model analysis. RESULTS: A total of 11 studies, all randomized, controlled trials, were included (n = 12,072 participants), recruiting adult patients undergoing abdominal surgery. In the random effect model analysis, the use of alcohol-based CHG in patients undergoing abdominal surgery was associated with a reduced risk of SSI compared to aqueous-based PVI (odds ratio: 0.84; 95% confidence interval [0.74, 0.96], z = 2.61, P = 0.009). CONCLUSIONS: Alcohol-based CHG may be more effective for preventing the risk of SSI compared to aqueous-based PVI agents in abdominal surgery. The conclusion of this meta-analysis may add a guiding value to reinforce current clinical practice guidelines.


Asunto(s)
Antiinfecciosos Locales , Cuidados Preoperatorios , Adulto , Humanos , Cuidados Preoperatorios/métodos , Antiinfecciosos Locales/uso terapéutico , Povidona Yodada/uso terapéutico , Etanol/uso terapéutico , Clorhexidina/uso terapéutico , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/prevención & control
14.
Environ Res ; 237(Pt 1): 116905, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597831

RESUMEN

Membranes are receiving significant attention to remove emerging organic micropollutants (OMPs) from wastewater and natural water sources. Herein, we report the facile preparation of a novel thin-film nanocomposite (TFN) membrane with high permeability and efficient removal of OMPs. ZnO nanoparticles were first synthesized using the co-precipitation method and functionalized with N1-(3-Trimethoxysilylpropyl)diethylenetriamine to make the surface rich with amine groups and then synthesized nanomaterials were covalently cross-linked into the active layer during the interfacial polymerization (IP) process. The performance of the membranes containing the cross-linked ZnO was significantly better than the non-cross-linked ZnO NPs containing membranes. Adding multiple hydrophilic groups and entities on the surface significantly decreased the contact angle (from ∼60° to 20°). SEM images confirmed the uniform presence and homogeneous distribution of the functionalized NPs throughout the entire membrane surface. Zeta potential measurements showed the modified membranes have a lower negative charge than the pristine membranes. Filtration studies revealed a significant increase in permeability ascribed to the creation of nanochannels in the membrane's active layer. The modified membranes outperformed commercial NF membranes in removing four common OMPs with rejection efficiencies of ∼30%, 64%, 60%, and 70% for Sulfamethoxazole, Amitriptyline, Omeprazole, and Loperamide HCl, respectively. The higher removal efficiency was attributed to the weakened hydrophobic interactions due to the presence of hydrophilic moieties and a stronger size exclusion effect. Moreover, the modified membranes showed high resistance to bacterial adhesion in static conditions.

15.
J Public Health (Oxf) ; 45(2): 338-346, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-36418235

RESUMEN

BACKGROUND: Tuberculosis (TB) like many other infectious diseases has a strong relationship with climatic parameters. METHODS: The present study has been carried out on the newly diagnosed sputum smear-positive pulmonary TB cases reported to National TB Control Program across Pakistan from 2007 to 2020. In this study, spatial and temporal distribution of the disease was observed through detailed district wise mapping and clustered regions were also identified. Potential risk factors associated with this disease depending upon population and climatic variables, i.e. temperature and precipitation were also identified. RESULTS: Nationwide, the incidence rate of TB was observed to be rising from 7.03% to 11.91% in the years 2007-2018, which then started to decline. However, a declining trend was observed after 2018-2020. The most populous provinces, Punjab and Sindh, have reported maximum number of cases and showed a temporal association as the climatic temperature of these two provinces is higher with comparison to other provinces. Machine learning algorithms Maxent, Support Vector Machine (SVM), Environmental Distance (ED) and Climate Space Model (CSM) predict high risk of the disease with14.02%, 24.75%, 34.81% and 43.89% area, respectively. CONCLUSION: SVM has a higher significant probability of prediction in the diseased area with a 1.86 partial receiver-operating characteristics (ROC) value as compared with other models.


Asunto(s)
Tuberculosis Pulmonar , Tuberculosis , Humanos , Pakistán/epidemiología , Tuberculosis/epidemiología , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/epidemiología , Factores de Riesgo , Simulación por Computador
16.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067888

RESUMEN

The primary objective of this study is to develop an advanced, automated system for the early detection and classification of leaf diseases in potato plants, which are among the most cultivated vegetable crops worldwide. These diseases, notably early and late blight caused by Alternaria solani and Phytophthora infestans, significantly impact the quantity and quality of global potato production. We hypothesize that the integration of Vision Transformer (ViT) and ResNet-50 architectures in a new model, named EfficientRMT-Net, can effectively and accurately identify various potato leaf diseases. This approach aims to overcome the limitations of traditional methods, which are often labor-intensive, time-consuming, and prone to inaccuracies due to the unpredictability of disease presentation. EfficientRMT-Net leverages the CNN model for distinct feature extraction and employs depth-wise convolution (DWC) to reduce computational demands. A stage block structure is also incorporated to improve scalability and sensitive area detection, enhancing transferability across different datasets. The classification tasks are performed using a global average pooling layer and a fully connected layer. The model was trained, validated, and tested on custom datasets specifically curated for potato leaf disease detection. EfficientRMT-Net's performance was compared with other deep learning and transfer learning techniques to establish its efficacy. Preliminary results show that EfficientRMT-Net achieves an accuracy of 97.65% on a general image dataset and 99.12% on a specialized Potato leaf image dataset, outperforming existing methods. The model demonstrates a high level of proficiency in correctly classifying and identifying potato leaf diseases, even in cases of distorted samples. The EfficientRMT-Net model provides an efficient and accurate solution for classifying potato plant leaf diseases, potentially enabling farmers to enhance crop yield while optimizing resource utilization. This study confirms our hypothesis, showcasing the effectiveness of combining ViT and ResNet-50 architectures in addressing complex agricultural challenges.


Asunto(s)
Solanum tuberosum , Agricultura , Productos Agrícolas , Cultura , Enfermedades de las Plantas , Hojas de la Planta
17.
Vet Med (Praha) ; 68(6): 238-245, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37982002

RESUMEN

The present study was aimed at measuring the concentration of aflatoxin M1 (AFM1) in the milk of Holstein Friesian cows, its effect on the milk quality and seasonal trends, as well as to investigate the efficacy of a commercial clay-based toxin binder. For this purpose, milk samples from dairy cows (n = 72) were collected and assayed for AFM1 before employing a clay-based toxin binder. The milk samples (n = 72) were collected from selected animals, revealing that 69.4% of the milk samples had AFM1 levels above the United States permissible limit (0.5 µg/kg). The incidence of AFM1 in milk during the winter and summer was 82.5% and 53.1%, respectively. Owing to the presence of AFM1, the level of milk fat, solids-not-fat, and protein were found to be low. Subsequently, the affected animals were divided into two groups, i.e., AFM1 positive control (n = 10) and the experimental group (n = 40). The experimental group of animals were fed the clay-based toxin binder at 25 g/animal/day. A progressive decrease of 19.8% in the AFM1 levels was observed on day 4 and on day 7 (53.6%) in the treatment group. Furthermore, the fat, solids-non-fat and protein increased significantly in the milk. In conclusion, a high level of AFM1 contamination occurs in the milk in Pakistan, affecting the quality of the milk production. Clay-based toxin binders may be used to ensure the milk quality and to protect the animal and consumer health.

18.
Waste Manag Res ; 41(2): 337-349, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36471529

RESUMEN

This research aims to analyse and understand recycling phenomena and competition between large-scale and small-scale enterprises under different public attention. It mainly emphasizes service-providing behaviours to the consumers in the recycling industry, where recyclers are struggling to enhance their profits. The government strives to protect the environment by promoting an efficient recycling industry. As fast-growing waste products, the recyclers should achieve the advantage of number and be equipped with service capability for the consumers. Thus, this study employs an evolutionary game model to analyse the competition for waste products acquisitions between large and small recyclers. Due to a significant association between the service and acquisition waste product price for the consumers and recycling quantity, there is a strong mutual influence between the acquisition price of waste products and the price strategy-taken rate of large and small recyclers. Results also reveal that the market acquisition price and processing cost play a crucial role in recyclers' decision-making on setting prices for acquiring waste products from consumers. Furthermore, it is also found that waste products acquisition price and recyclers' processing cost are the key factors that affect large and small recyclers' recycling quantity.


Asunto(s)
Administración de Residuos , Industrias , Residuos , Reciclaje , China
19.
Chem Rec ; 22(7): e202100320, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35189025

RESUMEN

Oily wastewater has become one of the leading causes of environmental pollution. A massive quantity of oily wastewater is released from industries, oil spills, and routine activities, endangering the ecosystem's sustainability. Due to the enormous negative impact, researchers put strenuous efforts into developing a sustainable solution to treat oily wastewater. Microfiltration/ultrafiltration membranes are considered an efficient solution to treat oily wastewater due to their low cost, small footprint, facile operation, and high separation efficiencies. However, membranes severely fouled during the separation process due to oil's adsorption and cake layer formation, which shortens the membranes' life. This review has critically discussed the microfiltration/ultrafiltration membrane synthesizing methods and their emulsion's separation performance. In the end, key challenges and their possible solutions are highlighted to provide future direction to synthesize next-generation membranes.


Asunto(s)
Ultrafiltración , Purificación del Agua , Ecosistema , Emulsiones , Membranas Artificiales , Aceites , Ultrafiltración/métodos , Aguas Residuales , Purificación del Agua/métodos
20.
Mol Biol Rep ; 49(11): 10975-10993, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36057876

RESUMEN

BACKGROUND: Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output. METHODS: Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations. RESULTS: As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses. CONCLUSION: The review article highlights current trends and advances in sRNAs' critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.


Asunto(s)
Sequías , Estrés Fisiológico , Interferencia de ARN , Estrés Fisiológico/genética , Productos Agrícolas/genética , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA