Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 143(3): 258-271, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37879074

RESUMEN

ABSTRACT: In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Inmunoterapia , Índice Terapéutico , Antígenos CD19 , Inmunoterapia Adoptiva/métodos
2.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561490

RESUMEN

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Asunto(s)
Enfermedad Injerto contra Huésped , Terapia de Inmunosupresión , Células Madre Mesenquimatosas , Receptores Quiméricos de Antígenos , Animales , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Terapia de Inmunosupresión/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Enfermedad Injerto contra Huésped/inmunología , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Linfocitos T/inmunología , Cadherinas/metabolismo , Ratones Endogámicos C57BL , Citocinas/metabolismo
3.
Front Pediatr ; 11: 1305657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283399

RESUMEN

Clinical trials of anti-CD19 chimeric antigen receptor T (CART19) cell therapy have shown high overall response rates in patients with relapsed/refractory B-cell malignancies. CART19 cell therapy has been approved by the US Food and Drug Administration for patients who relapsed less than 12 months after initial therapy or who are refractory to first-line therapy. However, durable remission of CART19 cell therapy is still lacking, and 30%-60% of patients will eventually relapse after CART19 infusion. In general, the prognosis of patients who relapse after CART19 cell therapy is poor, and various strategies to treat this patient population have been investigated extensively. CART19 failures can be broadly categorized by the emergence of either CD19-positive or CD19-negative lymphoma cells. If CD19 expression is preserved on the lymphoma cells, a second infusion of CART19 cells or reactivation of previously infused CART19 cells with immune checkpoint inhibitors can be considered. When patients develop CD19-negative relapse, targeting different antigens (e.g., CD20 or CD22) with CAR T cells, investigational chemotherapies, or hematopoietic stem cell transplantation are potential treatment options. However, salvage therapies for relapsed large B-cell lymphoma after CART19 cell therapy have not been fully explored and are conducted based on clinicians' case-by-case decisions. In this review, we will focus on salvage therapies reported to date and discuss the management of relapsed/refractory large B-cell lymphomas after CART19 cell therapy.

4.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847405

RESUMEN

Chimeric antigen receptor T (CART) cell therapy has emerged as a powerful tool for the treatment of multiple types of CD19+ malignancies, which has led to the recent FDA approval of several CD19-targeted CART (CART19) cell therapies. However, CART cell therapy is associated with a unique set of toxicities that carry their own morbidity and mortality. This includes cytokine release syndrome (CRS) and neuroinflammation (NI). The use of preclinical mouse models has been crucial in the research and development of CART technology for assessing both CART efficacy and CART toxicity. The available preclinical models to test this adoptive cellular immunotherapy include syngeneic, xenograft, transgenic, and humanized mouse models. There is no single model that seamlessly mirrors the human immune system, and each model has strengths and weaknesses. This methods paper aims to describe a patient-derived xenograft model using leukemic blasts from patients with acute lymphoblastic leukemia as a strategy to assess CART19-associated toxicities, CRS, and NI. This model has been shown to recapitulate CART19-associated toxicities as well as therapeutic efficacy as seen in the clinic.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Xenoinjertos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Inmunoterapia Adoptiva/métodos
5.
Cancer Immunol Res ; 11(9): 1222-1236, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37378662

RESUMEN

The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)-cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)-cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras/genética
6.
Front Oncol ; 12: 1082235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686821

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare form and aggressive type of diffuse large B-cell lymphoma (DLBCL) that occurs in both immunocompetent and immunocompromised adults. While adding rituximab to chemotherapeutic regimens resulted in dramatic improvement in both progression-free survival and overall survival in patients with non-central nervous system (CNS) DLBCL, the outcomes of PCNSL are generally poor due to the immune-privileged tumor microenvironment or suboptimal delivery of systemic agents into tumor tissues. Therefore, more effective therapy for PCNSL generally requires systemic therapy with sufficient CNS penetration, including high-dose intravenous methotrexate with rituximab or high-dose chemotherapy followed by autologous stem cell transplantation. However, overall survival is usually inferior in comparison to non-CNS lymphomas, and treatment options are limited for elderly patients or patients with relapsed/refractory disease. Chimeric antigen receptor T (CAR-T) cell therapy has emerged as a cutting-edge cancer therapy, which led to recent FDA approvals for patients with B-cell malignancies and multiple myeloma. Although CAR-T cell therapy in patients with PCNSL demonstrated promising results without significant toxicities in some small cohorts, most cases of PCNSL are excluded from the pivotal CAR-T cell trials due to the concerns of neurotoxicity after CAR-T cell infusion. In this review, we will provide an overview of PCNSL and highlight current approaches, resistance mechanisms, and future perspectives of CAR-T cell therapy in patients with PCNSL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA